Nowadays, it's common to store numbers in binary format, and convert them to decimal format for display purposes, but the conversion does take some time. If the primary purpose of a number is to be displayed, or to be added to a number which will be displayed, it may be more practical to perform computations in a decimal format than to perform computations in binary and convert to decimal. Many devices with numerical readouts, and many video games, stored numbers in packed BCD format, which stores two digits per byte. This is why many score counters overflow at 1,000,000 points rather than some power-of-two value. If hardware did not facilitate packed-BCD arithmetic, the alternative would not be to use binary, but to use unpacked decimal. Converting packed BCD to unpacked decimal at the moment it's displayed can easily be done a digit at a time. Converting binary to decimal, by contrast, is much slower, and requires operating on the entire quantity.
Incidentally, the 8086 instruction set is the only one I've seen with instructions for "ASCII Adjust for Division" and "ASCII Adjust for Multiplication", one of which multiplies a byte by ten and the other of which divides by ten. Curiously, the value "0A" is part of the machine instructions, and substituting a different number will cause those instructions to multiply or divide by other quantities, but the instructions are not documented as being general-purpose multiply/divide-by-constant instructions. I wonder why that feature wasn't documented, given that it could have been useful?
It's also interesting to note the variety of approaches processors used for adding or subtracting packed BCD. Many perform a binary addition but use a flag to keep track of whether a carry occurred from bit 3 to bit 4 during an addition; they may then expect code to clean up the result (e.g. PIC), supply an opcode to cleanup addition but not subtraction, supply one opcode to clean up addition and another for subtraction (e.g. x86), or use a flag to track whether the last operation was addition or subtraction and use the same opcode to clean up both (e.g. Z80). Some use separate opcodes for BCD arithmetic (e.g. 68000), and some use a flag to indicate whether add/subtract operations should use binary or BCD (e.g. 6502 derivatives). Interestingly, the original 6502 performs BCD math at the same speed as binary math, but CMOS derivatives of it require an extra cycle for BCD operations.