I need to calculate the number of activity_months for each product in a pandas DataFrame. Here is my data and code so far:
from pandas import DataFrame
from datetime import datetime
data = [
('product_a','08/31/2013')
,('product_b','08/31/2013')
,('product_c','08/31/2013')
,('product_a','09/30/2013')
,('product_b','09/30/2013')
,('product_c','09/30/2013')
,('product_a','10/31/2013')
,('product_b','10/31/2013')
,('product_c','10/31/2013')
]
product_df = DataFrame( data, columns=['prod_desc','activity_month'])
for index, row in product_df.iterrows():
row['activity_month']= datetime.strptime(row['activity_month'],'%m/%d/%Y')
product_df.loc[index, 'activity_month'] = datetime.strftime(row['activity_month'],'%Y-%m-%d')
product_df = product_df.sort(['prod_desc','activity_month'])
product_df['month_num'] = product_df.groupby(['prod_desc']).size()
However, this returns NaNs for month_num.
Here is what I want to get:
prod_desc activity_month month_num
product_a 2014-08-31 1
product_a 2014-09-30 2
product_a 2014-10-31 3
product_b 2014-08-31 1
product_b 2014-09-30 2
product_b 2014-10-31 3
product_c 2014-08-31 1
product_c 2014-09-30 2
product_c 2014-10-31 3