There is an static method in the framework, that can be used to convert any integrated data type into a string, namely Convert.ToString
:
List<int> ints = new List<int> { 1 };
List<string> strings = ints.ConvertAll<string>(Convert.ToString);
Since the signature of Convert.ToString
is also known, you can even eliminate the explicit target type parameter:
var strings = ints.ConvertAll(Convert.ToString);
This works. However, I'd also prefer the lambda-expression, even if ReSharper tells you something different. ReSharper sometimes optimizes too much imho. It prevents developers from thinking about their code, especially in the aspect of readability.
Update
Based on Tim's comment, I will try to explain the difference between lambda and static method group calls in this particular case. Therefor, I first took a look into the mscorlib
disassembly to figure out, how int-to-string conversion exactly works. The Int32.ToString
method calls an external method within the Number
-class of the System
namespace:
[__DynamicallyInvokable, TargetedPatchingOptOut("Performance critical to inline across NGen image boundaries"), SecuritySafeCritical]
public string ToString(IFormatProvider provider)
{
return Number.FormatInt32(this, null, NumberFormatInfo.GetInstance(provider));
}
The static Convert.ToString
member does nothing else than calling ToString
on the parameter:
[__DynamicallyInvokable]
public static string ToString(int value)
{
return value.ToString(CultureInfo.CurrentCulture);
}
Technically there would be no difference, if you'd write your own static member or extension, like you did in your question. So what's the difference between those two lines?
ints.ConvertAll<string>(i => i.ToString());
ints.ConvertAll(Convert.ToString);
Also - technically - there is no difference. The first example create's an anonymous method, that returns a string and accepts an integer. Using the integer's instance, it calls it's member ToString
. The second one does the same, with the exception that the method is not anonymous, but an integrated member of the framework.
The only difference is that the second line is shorter and saves the compiler a few operations.
But why can't you call the non-static ToString
directly?
Let's take a look into the ConvertAll
-method of List
:
public List<TOutput> ConvertAll<TOutput>(Converter<T, TOutput> converter)
{
if (converter == null)
{
ThrowHelper.ThrowArgumentNullException(ExceptionArgument.converter);
}
List<TOutput> list = new List<TOutput>(this._size);
for (int i = 0; i < this._size; i++)
{
list._items[i] = converter(this._items[i]);
}
list._size = this._size;
return list;
}
The list iteraterates over each item, calls the converter with the item as an argument and copys the result into a new list which it returns in the end.
So the only relation here is your converter
that get's called explicitly. If you could pass Int32.ToString
to the method, the compiler would have to decide to call this._items[i].ToString()
within the loop. In this specific case it would work, but that's "too much intelligence" for the compiler. The type system does not support such code conversions. Instead the converter is an object, describing a method that can be called from the scope of the callee. Either this is an existing static method, like Convert.ToString
, or an anonymous expression, like your lambda.
What causes the differences in your benchmark results?
That's hard to guess. I can imagine two factors:
- Evaluating lambdas may result in runtime-overhead.
- Framework calls may be optimized.
The last point especially means, that the JITer is able to inline the call which results in a better performance. However, those are just assumptions of mine. If anyone could clarify this, I'd appreciate it! :)