I am wanting to find optimum parameters for a function that determines survival from hazard rates (force of mortality).
eh <- function(kappa,lambda,time,delay){
FoM <- -log(1-(1-exp(-kappa*(time+delay)))*(exp(-lambda*time)))
return(FoM)
}
survival <- function(k, l, t, d){
theSurvs <- array(1, c(1, length(t)))
S = array(1)
Qs <- array(0)
for(j in 1:length(t)){
S[1] = 1
for(i in 1:(t[j]+1)){
theEHs <- eh(k, l, i-1, d)
theQs <- hazards2Qs(theEHs)
S[i+1] <- S[i]-S[i]*theQs
}
theSurvs[j] <- S[i]
}
return(theSurvs)
}
hazards2Qs <- function(hazards){
Qs<- 1-exp(-hazards)
return(Qs)
}
timeX = 0 # time cycles of arbitrary length
kappaX = 0.001
lambdaX = 0.05
delayX = 50
theYears <- floor(runif(20)*100)
theYears
EHs <- eh(kappaX, lambdaX, theYears, delayX)
theS <- survival(kappaX, lambdaX, theYears, delayX)
theS
theData <- data.frame(theYears, t(theS))
theData
survival(kappaX, lambdaX, theYears, delayX)
mod <- nls(~ survival(kappa, lambda, theYears, delay), start=list(lambda=0.0015, kappa=0.0013, delay=48), data=theData, trace=1)
When I run it I get this error:
3.647752 : 0.0015 0.0013 48.0000
Error in qr.qty(QR, resid) :
'qr' and 'y' must have the same number of rows
traceback():
4: stop("'qr' and 'y' must have the same number of rows")
3: qr.qty(QR, resid)
2: (function ()
{
if (npar == 0)
return(0)
rr <- qr.qty(QR, resid)
sqrt(sum(rr[1L:npar]^2)/sum(rr[-(1L:npar)]^2))
})()
> dim(theS)
[1] 1 20
> dim(theYears)
NULL
> dim(theData)
[1] 20 2
> typeof(theData)
[1] "list"
> typeof(theS)
[1] "double"
> typeof(theYears)
[1] "double"
I have been slogging for a day and not got to the bottom of this. Any ideas?