There isn't really a lot to recommend. If I understand the question and I'm counting the pairs correctly, you'll need to calculate 10 distances when you have 5 points, and 15 distances when you have 6 points. If you need to determine all of the distances, then you have no choice but to calculate all of the distances. I don't see any way around that. The only advice I can give is to make sure you calculate the distance between each pair only once (e.g., once you know the distance between points A and B, you don't need to calculate the distance between B and A).
It might be possible to sort the vector in such a way that you can short circuit your loop. For instance, if you sort it correctly and the distance between point A and point B is larger than your threshold, then the distances between A and C and A and D will also be larger than the threshold. But keep in mind that sorting isn't free, and it's likely that for small sets of points it would be faster to just calculate all distances ("Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until you know that n is frequently going to be big, don't get fancy. ... For example, binary trees are always faster than splay trees for workaday problems.").
Newer versions of the C and C++ standard library have a hypot
function for calculating distance between points:
#include <cmath>
double getDistance(cv::Point2f punt1, cv::Point2f punt2)
{
return std::hypot(punt2.x - punt1.x, punt2.y - punt1.y);
}
It's not necessarily faster, but it should be implemented in a way that avoids overflow when the points are far apart.
One minor optimization is to simply check if the change in X or change in Y exceeds the threshold. If it does, you can ignore the distance between those two points because the overall distance will also exceed the threshold:
const double threshold = ...;
std::vector<cv::Point2f> points;
// populate points
...
for (auto i = points.begin(); i != points.end(); ++i) {
for (auto j = i + 1; j != points.end(); ++j) {
double dx = std::abs(i->x - j->x), dy = std::abs(i->y - j->y);
if (dx > threshold || dy > threshold) {
continue;
}
double distance = std::hypot(dx, dy);
if (distance > threshold) {
continue;
}
...
}
}