I'm wondering why HDFStore gives warnings on string columns in pandas. I thought it may be NaNs in my real database, but trying it here gives me the warning for both columns even though one is not mixed and is simply strings.
Using .13.1 pandas and 3.1.1 tables
In [75]: d1 = {1:{'Mix': 'Hello', 'Good': 'Hello'}}
In [76]: d2 = {2:{'Good':'Goodbye'}}
In [77]: d2_df = pd.DataFrame.from_dict(d2,orient='index')
In [78]: d_df = pd.DataFrame.from_dict(d1,orient='index')
In [80]: d = pd.concat([d_df,d2_df])
In [81]: d
Out[81]:
Good Mix
1 Hello Hello
2 Goodbye NaN
[2 rows x 2 columns]
In [84]: d.to_hdf('test_.h5','d')
/home/cschwalbach/venv/lib/python2.7/site-packages/pandas-0.13.1-py2.7-linux-x86_64.egg/pandas/io/pytables.py:2446: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block0_values] [items->['Good', 'Mix']]
warnings.warn(ws, PerformanceWarning)