I'm using Scipy 14.0 to solve a system of ordinary differential equations describing the dynamics of a gas bubble rising vertically (in the z direction) in a standing still fluid because of buoyancy forces. In particular, I have an equation expressing the rising velocity U as a function of bubble radius R, i.e. U=dz/dt=f(R), and one expressing the radius variation as a function of R and U, i.e. dR/dT=f(R,U). All the rest appearing in the code below are material properties. I'd like to implement something to account for the physical constraint on z which, obviously, is limited by the liquid height H. I consequently implemented a sort of z<=H constraint in order to stop integration in advance if needed: I used set_solout in order to do so. The situation is that the code runs and gives good results, but set_solout is not working at all (it seems like z_constraint is never called actually...). Do you know why? Is there somebody with a more clever idea, may be also in order to interrupt exactly when z=H (i.e. a final value problem) ? is this the right way/tool or should I reformulate the problem?
thanks in advance
Emi
from scipy.integrate import ode
Db0 = 0.001 # init bubble radius
y0, t0 = [ Db0/2 , 0. ], 0. #init conditions
H = 1
def y_(t,y,g,p0,rho_g,mi_g,sig_g,H):
R = y[0]
z = y[1]
z_ = ( R**2 * g * rho_g ) / ( 3*mi_g ) #velocity
R_ = ( R/3 * g * rho_g * z_ ) / ( p0 + rho_g*g*(H-z) + 4/3*sig_g/R ) #R dynamics
return [R_, z_]
def z_constraint(t,y):
H = 1 #should rather be a variable..
z = y[1]
if z >= H:
flag = -1
else:
flag = 0
return flag
r = ode( y_ )
r.set_integrator('dopri5')
r.set_initial_value(y0, t0)
r.set_f_params(g, 5*1e5, 2000, 40, 0.31, H)
r.set_solout(z_constraint)
t1 = 6
dt = 0.1
while r.successful() and r.t < t1:
r.integrate(r.t+dt)