I am learning how to use various random forest packages and coded up the following from example code:
library(party)
library(randomForest)
set.seed(415)
#I'll try to reproduce this with a public data set; in the mean time here's the existing code
data = read.csv(data_location, sep = ',')
test = data[1:65] #basically data w/o the "answers"
m = sample(1:(nrow(factor)),nrow(factor)/2,replace=FALSE)
o = sample(1:(nrow(data)),nrow(data)/2,replace=FALSE)
train2 = data[m,]
train3 = data[o,]
#random forest implementation
fit.rf <- randomForest(train2[,66] ~., data=train2, importance=TRUE, ntree=10000)
Prediction.rf <- predict(fit.rf, test) #to see if the predictions are accurate -- but it errors out unless I give it all data[1:66]
#cforest implementation
fit.cf <- cforest(train3[,66]~., data=train3, controls=cforest_unbiased(ntree=10000, mtry=10))
Prediction.cf <- predict(fit.cf, test, OOB=TRUE) #to see if the predictions are accurate -- but it errors out unless I give it all data[1:66]
Data[,66] is the is the target factor I'm trying to predict, but it seems that by using "~ ." to solve for it is causing the formula to use the factor in the prediction model itself.
How do I solve for the dimension I want on high-ish dimensionality data, without having to spell out exactly which dimensions to use in the formula (so I don't end up with some sort of cforest(data[,66] ~ data[,1] + data[,2] + data[,3}... etc.?
EDIT: On a high level, I believe one basically
- loads full data
- breaks it down to several subsets to prevent overfitting
- trains via subset data
- generates a fitting formula so one can predict values of target (in my case data[,66]) given data[1:65].
so my PROBLEM is now if I give it a new set of test data, let’s say test = data{1:65], it now says “Error in eval(expr, envir, enclos) :” where it is expecting data[,66]. I want to basically predict data[,66] given the rest of the data!