I have a system of a linear equation and a quadratic equation that I can set up with numpy
and scipy
so I can get a graphical solution. Consider the example code:
#!/usr/bin/env python
# Python 2.7.1+
import numpy as np #
import matplotlib.pyplot as plt #
# d is a constant;
d=3
# h is variable; depends on x, which is also variable
# linear function:
# condition for h: d-2x=8h; returns h
def hcond(x):
return (d-2*x)/8.0
# quadratic function:
# condition for h: h^2+x^2=d*x ; returns h
def hquad(x):
return np.sqrt(d*x-x**2)
# x indices data
xi = np.arange(0,3,0.01)
# function values in respect to x indices data
hc = hcond(xi)
hq = hquad(xi)
fig = plt.figure()
sp = fig.add_subplot(111)
myplot = sp.plot(xi,hc)
myplot2 = sp.plot(xi,hq)
plt.show()
That code results with this plot:
It's clear that the two functions intersect, thus there is a solution.
How could I automatically solve what is the solution (the intersection point), while keeping most of the function definitions intact?