This really comes down to what you actually want to do in this case.
For a machine where long
or long long
(or int64_t
) is a 64-bit value, and int
is a 32-bit value, you could do (I'm assuming long
is 64 bit here):
long x = static_cast<long>(a) * b;
if (x > MAX_INT || x < MIN_INT)
return 0;
else
return static_cast<int>(x);
By casting one value to long
, the other will have to be converted as well. You can cast both if that makes you happier. The overhead here, above a normal 32-bit multiply is a couple of clock-cycles on modern CPU's, and it's unlikely that you can find a safer solution, that is also faster. [You can, in some compilers, add attributes to the if
saying that it's unlikely to encourage branch prediction "to get it right" for the common case of returning x
]
Obviously, this won't work for values where the type is as big as the biggest integer you can deal with (although you could possibly use floating point, but it may still be a bit dodgy, since the precision of float is not sufficient - could be done using some "safety margin" tho' [e.g. compare to less than LONG_INT_MAX / 2
], if you don't need the entire range of integers.). Penalty here is a bit worse tho', especially transitions between float and integer isn't "pleasant".
Another alternative is to actually test the relevant code, with "known invalid values", and as long as the rest of the code is "ok" with it. Make sure you test this with the relevant compiler settings, as changing the compiler options will change the behaviour. Note that your code then has to deal with "what do we do when 65536 * 100000
is a negative number", and your code didn't expect so. Perhaps add something like:
int x = a * b;
if (x < 0) return 0;
[But this only works if you don't expect negative results, of course]
You could also inspect the assembly code generated and understand the architecture of the actual processor [the key here is to understand if "overflow will trap" - which it won't by default in x86, ARM, 68K, 29K. I think MIPS has an option of "trap on overflow"], and determine whether it's likely to cause a problem [1], and add something like
#if (defined(__X86__) || defined(__ARM__))
#error This code needs inspecting for correct behaviour
#endif
return a * b;
One problem with this approach, however, is that even the slightest changes in code, or compiler version may alter the outcome, so it's important to couple this with the testing approach above (and make sure you test the ACTUAL production code, not some hacked up mini-example).
[1] The "undefined behaviour" is undefined to allow C to "work" on processors that have trapping overflows of integer math, as well as the fact that that a * b
when it overflows in a signed value is of course hard to determine unless you have a defined math system (two's complement, one's complement, distinct sign bit) - so to avoid "defining" the exact behaviour in these cases, the C standard says "It's undefined". It doesn't mean that it will definitely go bad.