My code runs fine with smaller test samples, like 10000 rows of data in X_train
, y_train
. When I call it for millions of rows, I get the resulting error. Is the bug in a package, or can I do something differently? I am using Python 2.7.7 from Anaconda 2.0.1, and I put the pool.py from Anaconda's multiprocessing package and parallel.py from scikit-learn's external package on my Dropbox for you.
The test script is:
import numpy as np
import sklearn
from sklearn.linear_model import SGDClassifier
from sklearn import grid_search
import multiprocessing as mp
def main():
print("Started.")
print("numpy:", np.__version__)
print("sklearn:", sklearn.__version__)
n_samples = 1000000
n_features = 1000
X_train = np.random.randn(n_samples, n_features)
y_train = np.random.randint(0, 2, size=n_samples)
print("input data size: %.3fMB" % (X_train.nbytes / 1e6))
model = SGDClassifier(penalty='elasticnet', n_iter=10, shuffle=True)
param_grid = [{
'alpha' : 10.0 ** -np.arange(1,7),
'l1_ratio': [.05, .15, .5, .7, .9, .95, .99, 1],
}]
gs = grid_search.GridSearchCV(model, param_grid, n_jobs=8, verbose=100)
gs.fit(X_train, y_train)
print(gs.grid_scores_)
if __name__=='__main__':
mp.freeze_support()
main()
This results in the output:
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Started.
('numpy:', '1.8.1')
('sklearn:', '0.15.0b1')
input data size: 8000.000MB
Fitting 3 folds for each of 48 candidates, totalling 144 fits
Memmaping (shape=(1000000L, 1000L), dtype=float64) to new file c:\users\laszlos\appdata\local\temp\4\joblib_memmaping_pool_6172_78765976\6172-284752304-75223296-0.pkl
Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
File "C:\Anaconda\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 240, in save
obj, filename = self._write_array(obj, filename)
File "C:\Anaconda\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 203, in _write_array
self.np.save(filename, array)
File "C:\Anaconda\lib\site-packages\numpy\lib\npyio.py", line 453, in save
format.write_array(fid, arr)
File "C:\Anaconda\lib\site-packages\numpy\lib\format.py", line 406, in write_array
array.tofile(fp)
ValueError: 1000000000 requested and 268435456 written
Memmaping (shape=(1000000L, 1000L), dtype=float64) to old file c:\users\laszlos\appdata\local\temp\4\joblib_memmaping_pool_6172_78765976\6172-284752304-75223296-0.pkl
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 28 days
Traceback (most recent call last):
File "S:\laszlo\gridsearch_largearray.py", line 33, in <module>
main()
File "S:\laszlo\gridsearch_largearray.py", line 28, in main
gs.fit(X_train, y_train)
File "C:\Anaconda\lib\site-packages\sklearn\grid_search.py", line 597, in fit
return self._fit(X, y, ParameterGrid(self.param_grid))
File "C:\Anaconda\lib\site-packages\sklearn\grid_search.py", line 379, in _fit
for parameters in parameter_iterable
File "C:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py", line 651, in __call__
self.retrieve()
File "C:\Anaconda\lib\site-packages\sklearn\externals\joblib\parallel.py", line 503, in retrieve
self._output.append(job.get())
File "C:\Anaconda\lib\multiprocessing\pool.py", line 558, in get
raise self._value
struct.error: integer out of range for 'i' format code
EDIT: ogrisel
's answer does work with manual memory mapping with scikit-learn-0.15.0b1. Don't forget to run only one script at once, otherwise you can still run out of memory and have too many threads. (My run take ~60 GB on data of size ~12.5 GB in CSV, with 8 threads.)