I am using Caffe which is a framework for convolutional neural networks with GPUs(or CPUs). It uses mainly CUDA 6.0 and I'm training a CNN with a large dataset of images(ImageNet dataset=1.2million of images) and requires a great amount of memory. However I'm running small experiments over subsets of the original(which also require significant amounts of memory). I am also working on a gpu cluster. This is the output of the command $ nvidia-smi
+------------------------------------------------------+
| NVIDIA-SMI 331.62 Driver Version: 331.62 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M2050 Off | 0000:08:00.0 Off | 0 |
| N/A N/A P0 N/A / N/A | 1585MiB / 2687MiB | 99% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M2050 Off | 0000:09:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M2050 Off | 0000:0A:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M2050 Off | 0000:15:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 Tesla M2050 Off | 0000:16:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 Tesla M2050 Off | 0000:19:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 6 Tesla M2050 Off | 0000:1A:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 7 Tesla M2050 Off | 0000:1B:00.0 Off | 0 |
| N/A N/A P1 N/A / N/A | 6MiB / 2687MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Compute processes: GPU Memory |
| GPU PID Process name Usage |
|=============================================================================|
| 0 10242 ../../../build/tools/train_net.bin 1577MiB |
+-----------------------------------------------------------------------------+
But when I try to run these multiple processes(for example the same train_net.bin over a different dataset), they fail because they are running on the same GPU and I want to know how to force to use another GPU. I would appreciate any help.