I have a small data frame (see below) containing 2 species "Aganope" and "Brienope" (factor format) with its geographical coordinates (19 lines records for Aganope and 12 lines for Brienope). I want to make the map of this species and, for the first one, my code is:
library(dismo)
str(data)
data
data<-data[1:19,]
str(data)
data
acgeo <- subset(data, !is.na(EST) & !is.na(SOUTH))
dim(acgeo)
acgeo[1:19, c(1:3,1:3)]
# Placer tous les lieux de récolte de Aganope sur le fond de carte bioclimate 5
points(acgeo$EST, acgeo$SOUTH, col="red", pch=21, bg="black", cex=1)
In this code, I choose my species by the number of lines of the data frame (here species "Aganope" since line 1 to line 19). I will have very soon many more species in this data frame. My question is : Do you have a method for mapping this species by the factor's name (Aganope or Brienope) and NOT by numbering the line of the data frame?
Yours sincerely
Here is my data frame
Number Species_name Collector_name East South
1 Aganope Antila_1186 49.8427778 -15.4327778
2 Aganope Bar_2365 48.4166667 -17.5500000
3 Aganope Bern_1760 50.2344444 -15.3352778
4 Aganope Carl_43 49.7500000 -15.4833333
5 Aganope Flore_1979 49.7666667 -15.5000000
6 Aganope Milir_3654 49.7666667 -15.5000000
7 Aganope Perret_2062 50.4333333 -15.1833333
8 Aganope Raharim_21401 49.7166667 -16.4500000
9 Aganope Ralim_109 50.0138889 -15.2869444
10 Aganope Sciza_1351 49.9500000 -15.6000000
11 Aganope Sciza_1354 50.0166667 -15.7833333
12 Aganope Sciza_1370 49.7666667 -15.5000000
13 Aganope Sciza_2016 49.7666667 -15.5000000
14 Aganope Serfa_18305 49.8497222 -15.4194444
15 Aganope Serfa_19221 49.3916667 -17.2833333
16 Aganope Serfa_28814 49.8833333 -16.8833333
17 Aganope Serfa_28847 49.8997222 -16.8983333
18 Aganope Serfa_32138 48.9333333 -19.0333333
19 Aganope Serfa_32245 48.9333333 -19.0333333
20 Brienope Dery_10119 47.1000000 -24.9833333
21 Brienope Dery_10210 46.9350000 -25.0486111
22 Brienope Dery_4230 46.9983333 -25.0397222
23 Brienope Dutz_544 47.0000000 -24.9500000
24 Brienope Dutz_756 47.1666667 -24.7833333
25 Brienope Rabetra_1835 46.8500000 -25.0666667
26 Brienope Rabetra_1892 47.0000000 -24.9500000
27 Brienope Rason_5 47.1569444 -24.8127778
28 Brienope Ratafika_748 46.9980556 -25.0405556
29 Brienope Scott_2473 46.9963889 -25.0416667
30 Brienope Serfa_21443 47.2000000 -24.5750000
31 Brienope Serfa_28332 46.9330556 -25.0494444