I am trying to compute numerically (using analytical formulae) the values of the following sequence of integrals:
I(k,t) = int_0^{N/2-1} u^k e^(-i*u*delta*t) du
where "i" is the imaginary unit. For small k, this integral can be computed by hand, but for larger k it is more convenient to notice that there is an iterative relationship between the terms of sequence that can be derived by integration by parts. This is implemented below by the function i1.
void i1(int N, double t, double delta, double complex ** result){
unsigned int k;
(*result)=(double complex*)malloc(sizeof(double complex)*N);
if(t==0){
for(k=0;k<N;k++){
(*result)[k]=pow(N-2,k+1)/(pow(2,k+1)*(k+1));
}
}
else{
(*result)[0]=2/(delta*t)*sin(delta*(N-2)*t/4)*cexp(-I*(N-2)*t*delta/4);
for(k=1;k<N;k++){
(*result)[k]=I/(delta*t)*(pow(N-2,k)/pow(2,k)*cexp(-I*delta*(N-2)*t/2)-k*(*result)[k-1]);
}
}
}
The problem is that in my case t is very small (1e-12) and delta is typically around 1e6. When testing in the case N=4, I noticed some weird results appearing for k=3, namely the results where suddenly very large, much larger than they should be as the norm of an integral is always smaller than the integral of the norm, the results of the test are printed below:
I1(0,1.0000e-12)=1.0000000000e+00+-5.0000000000e-07I
Norm=1.0000000000e+00
compare = 1.0000000000e+00
I1(1,1.0000e-12)=5.0000000000e-01+-3.3328895199e-07I
Norm=5.0000000000e-01
compare = 5.0000000000e-01
I1(2,1.0000e-12)=3.3342209601e-01+-2.5013324745e-07I
Norm=3.3342209601e-01
compare = 3.3333333333e-01
I1(3,1.0000e-12)=2.4960025766e-01+-2.6628804517e+02I
Norm=2.6628816215e+02
compare = 2.5000000000e-01
k=3 not being particularly big, I computed the value of the integral by hand, but I got using the calculator and the analytical formula I obtained the same larger than expected results for the imaginary part in the case. I also realized that if I changed the order of the terms the result changed. It therefore appears to be a problem with precision, as in the iterative process there is a subtraction of very large but almost equal terms, and following what was said on this thread: How to divide tiny double precision numbers correctly without precision errors?, this can cause small errors to be amplified. However I am finding it difficult to see how to resolve the issue in my case, and was also wondering if someone could briefly explain why this occurs?