When numbers are smaller, it's quick to grow the size of an array list from 2 to 4 memory addresses but when it starts to increase the amount of space closer to the max amount of space allowed in an array list (close to the 2MB limit). Would changing how much space is allotted in those bigger areas be more efficient if it was only growing the size of the array by a fraction of the size it needs at some point? Obviously growing the size from 1mb to 2mb isn't really a big deal now-days HOWEVER, if you had 50,000 people running something per hour that did this doubling the size of an array, I'm curious if that would be a good enough reason to alter how this works. Not to mention cut down on un-needed memory space (in theory).
A small graphical representation of what I mean.. ArrayList a has 4 elements in it and that is it's current max size at the moment
||||
Now lets add another item to the arraylist, the internal code will double the size of the array even though we're only adding one thing to the array. The arraylist now becomes 8 elements large
||||||||
At these size levels, I doubt it makes any difference but when you're allocating 1mb up to 2mb everytime someone is doing something like adding some file into an arraylist or something that is around 1.25mb, there's .75mb of un-needed space allocated.
To give you more of an idea of the code that is currently ran in c# by the System.Collections.Generic class. The way it works now is it doubles the size of an array list (read array), every time a user tries to add something to an array that is too small. Doubling the size is a good solution and makes sense, until you're essentially growing it far bigger than you technically need it to be.
Here's the source for this particular part of the class:
private void EnsureCapacity(int min)
{
if (this._items.Length >= min)
return;
// This is what I'm refering to
int num = this._items.Length == 0 ? 4 : this._items.Length * 2;
if ((uint) num > 2146435071U)
num = 2146435071;
if (num < min)
num = min;
this.Capacity = num;
}
I'm going to guess that this is how memory management is handled in many programming languages so this has probably been considered many times before, just wondering if this is a kind of efficiency saver that could save system resources by a large amount on a massive scale.