In the company I work for we build machines which are controlled by software running on Windows OS. A C# application communicates with a bus controller (via a DLL). The bus controller runs on a tact time of 15ms. That means, that we get updates of the actual sensors in the system with a heart beat of 15ms from the bus controller (which is real time).
Now, the machines are evolving into a next generation, where we get a new bus controller which runs on a tact of 1ms. Since everybody realizes that Windows is not a real time OS, the question arises: should we move the controlling part of the software to a real time application (on a real time OS, e.g. a (soft) PLC).
If we stay on the windows platform, we do not have guaranteed responsiveness. That on itself is not necessarily a problem; if we miss a few bus cycles (have a few hickups), the machine will just produce slightly slower (which is acceptable).
The part that worries me, is Thread synchronization between the main machine controlling thread, and the updates we receive from the real time controller (every millisecond).
Where can I learn more about how Windows / .NET C# behaves when it goes down the path of thread synchronization on milliseconds? I know that e.g. Thread.Sleep(1)
can take up to 15 ms because Windows is preempting other tasks, so how does this reflect when I synchronize between two threads with Monitor.PulseAll
every ms? Can I expect the same unpredictable behavior? Is it asking for trouble when I am moving into the soft real time requirements of 1ms in Windows applications?
I hope somebody with experience on these aspects of threading can shed some light on this. If I need to clarify more, by all means, shoot.