When I run this code with sklearn.__version__
0.15.0 I get a strange result:
import numpy as np
from scipy import sparse
from sklearn.decomposition import RandomizedPCA
a = np.array([[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]])
s = sparse.csr_matrix(a)
pca = RandomizedPCA(n_components=20)
pca.fit_transform(s)
With 0.15.0 I get:
>>> pca.explained_variance_ratio_.sum()
>>> 2.1214285714285697
with '0.14.1' I get:
>>> pca.explained_variance_ratio_.sum()
>>> 0.99999999999999978
The sum should not be greater than 1
Percentage of variance explained by each of the selected components. k is not set then all components are stored and the sum of explained variances is equal to 1.0
What is going on here?