First step : What kind of audio filter do you need ?
Choose the filtered band
For the following steps, i assume you need a Low-pass Filter.
Choose your cutoff frequency
The Cutoff frequency is the frequency where your signal will be attenuated by -3dB.
Your example signal is 440Hz, so let's choose a Cutoff frequency of 400Hz. Then your 440Hz-signal is attenuated (more than -3dB), by the Low-pass 400Hz filter.
Choose your filter type
According to this other stackoverflow answer
Filter design is beyond the scope of Stack Overflow - that's a DSP
problem, not a programming problem. Filter design is covered by any
DSP textbook - go to your library. I like Proakis and Manolakis'
Digital Signal Processing. (Ifeachor and Jervis' Digital Signal
Processing isn't bad either.)
To go inside a simple example, I suggest to use a moving average filter (for a simple low-pass filter).
See Moving average
Mathematically, a moving average is a type of convolution and so it can be viewed as an example of a low-pass filter used in signal processing
This Moving average Low-pass Filter is a basic filter, and it is quite easy to use and to understand.
The parameter of the moving average is the window length.
The relationship between moving average window length and Cutoff frequency needs little bit mathematics and is explained here
The code will be
import math
sampleRate = 11025.0
cutOffFrequency = 400.0
freqRatio = cutOffFrequency / sampleRate
N = int(math.sqrt(0.196201 + freqRatio**2) / freqRatio)
So, in the example, the window length will be 12
Second step : coding the filter
Hand-made moving average
see specific discussion on how to create a moving average in python
Solution from Alleo is
def running_mean(x, windowSize):
cumsum = numpy.cumsum(numpy.insert(x, 0, 0))
return (cumsum[windowSize:] - cumsum[:-windowSize]) / windowSize
filtered = running_mean(signal, N)
Using lfilter
Alternatively, as suggested by dpwilson, we can also use lfilter
win = numpy.ones(N)
win *= 1.0/N
filtered = scipy.signal.lfilter(win, [1], signal).astype(channels.dtype)
Third step : Let's Put It All Together
import matplotlib.pyplot as plt
import numpy as np
import wave
import sys
import math
import contextlib
fname = 'test.wav'
outname = 'filtered.wav'
cutOffFrequency = 400.0
# from http://stackoverflow.com/questions/13728392/moving-average-or-running-mean
def running_mean(x, windowSize):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[windowSize:] - cumsum[:-windowSize]) / windowSize
# from http://stackoverflow.com/questions/2226853/interpreting-wav-data/2227174#2227174
def interpret_wav(raw_bytes, n_frames, n_channels, sample_width, interleaved = True):
if sample_width == 1:
dtype = np.uint8 # unsigned char
elif sample_width == 2:
dtype = np.int16 # signed 2-byte short
else:
raise ValueError("Only supports 8 and 16 bit audio formats.")
channels = np.fromstring(raw_bytes, dtype=dtype)
if interleaved:
# channels are interleaved, i.e. sample N of channel M follows sample N of channel M-1 in raw data
channels.shape = (n_frames, n_channels)
channels = channels.T
else:
# channels are not interleaved. All samples from channel M occur before all samples from channel M-1
channels.shape = (n_channels, n_frames)
return channels
with contextlib.closing(wave.open(fname,'rb')) as spf:
sampleRate = spf.getframerate()
ampWidth = spf.getsampwidth()
nChannels = spf.getnchannels()
nFrames = spf.getnframes()
# Extract Raw Audio from multi-channel Wav File
signal = spf.readframes(nFrames*nChannels)
spf.close()
channels = interpret_wav(signal, nFrames, nChannels, ampWidth, True)
# get window size
# from http://dsp.stackexchange.com/questions/9966/what-is-the-cut-off-frequency-of-a-moving-average-filter
freqRatio = (cutOffFrequency/sampleRate)
N = int(math.sqrt(0.196196 + freqRatio**2)/freqRatio)
# Use moviung average (only on first channel)
filtered = running_mean(channels[0], N).astype(channels.dtype)
wav_file = wave.open(outname, "w")
wav_file.setparams((1, ampWidth, sampleRate, nFrames, spf.getcomptype(), spf.getcompname()))
wav_file.writeframes(filtered.tobytes('C'))
wav_file.close()