@Zeta's answer is interesting. But if you're new to Haskell like I am, you may want a "simple" answer to start with. (Just to get the basic recursion pattern...and to understand the indenting, and things like that.)
I'm not going to divide anything by 2 and I will include the number itself. So factorlist 15 => [1,3,5,15]
in my example:
factorList :: Int -> [Int]
factorList value = factorsGreaterOrEqual 1
where
factorsGreaterOrEqual test
| (test == value) = [value]
| (value `mod` test == 0) = test : restOfFactors
| otherwise = restOfFactors
where restOfFactors = factorsGreaterOrEqual (test + 1)
The first line is the type signature, which you already knew about. The type signature doesn't have to live right next to the list of pattern definitions for a function, (though the patterns themselves need to be all together on sequential lines).
Then factorList
is defined in terms of a helper function. This helper function is defined in a where
clause...that means it is local and has access to the value parameter. Were we to define factorsGreaterOrEqual globally, then it would need two parameters as value would not be in scope, e.g.
factorsGreaterOrEqual 4 15 => [5,15]
You might argue that factorsGreaterOrEqual is a useful function in its own right. Maybe it is, maybe it isn't. But in this case we're going to say it isn't of general use besides to help us define factorList
...so using the where clause and picking up value implicitly is cleaner.
The indentation rules of Haskell are (to my tastes) weird, but here they are summarized. I'm indenting with two spaces here because it grows too far right if you use 4.
Having a list of boolean tests with that pipe character in front are called "guards" in Haskell. I simply establish the terminal condition as being when the test hits the value; so factorsGreaterOrEqual N = [N]
if we were doing a call to factorList N
. Then we decide whether to concatenate the test number into the list by whether dividing the value by it has no remainder. (otherwise
is a Haskell keyword, kind of like default
in C-like switch statements for the fall-through case)
Showing another level of nesting and another implicit parameter demonstration, I added a where clause to locally define a function called restOfFactors
. There is no need to pass test as a parameter to restOfFactors because it lives "in the scope" of factorsGreaterOrEqual
...and as that lives in the scope of factorList
then value is available as well.