I have a csv file of power levels at several stations (4 in this case, though "HUT4" is not in this short excerpt):
2014-06-21T20:03:21,HUT3,74
2014-06-21T21:03:16,HUT1,70
2014-06-21T21:04:31,HUT3,73
2014-06-21T21:04:33,HUT2,30
2014-06-21T22:03:50,HUT3,64
2014-06-21T23:03:29,HUT1,60
(etc . .)
The times are not synchronised across stations. The power level is (in this case) integer percent. Some machines report in volts (~13.0), which would be an additional issue when plotting.
The data is easy to read into a dataframe, to index the dataframe, to put into a dictionary. But I can't get the right syntax to make a meaningful plot. Either all stations on a single plot sharing a timeline that's big enough for all stations, or as separate plots, maybe a subplot for each station. If I do:
import pandas as pd
df = pd.read_csv('Power_Log.csv',names=['DT','Station','Power'])
df2=df.groupby(['Station']) # set 'Station' as the data index
d = dict(iter(df2)) # make a dictionary including each station's data
for stn in d.keys():
d[stn].plot(x='DT',y='Power')
plt.legend(loc='lower right')
plt.savefig('Station_Power.png')
I do get a plot but the X axis is not right for each station.
I have not figured out yet how to do four independent subplots, which would free me from making a wide-enough timescale.
I would greatly appreciate comments on getting a single plot right and/or getting good looking subplots. The subplots do not need to have synchronised X axes.