Please, take into account the comments above and, in particular, that:
- If you calculate the FFT over
Npartial
elements, you will have an output of Npartial
elements;
- (following Robert Crovella) All the data required for the cuFFT must be resident on the device, before the cuFFT call is launched, so that you will not be able to break the data into pieces for a single cuFFT operation, and begin that operation before all pieces are on the GPU; furthermore, a cuFFT call is opaque;
Taking into account the above two points, I think you can only "emulate" what you like to achieve if you properly use zero padding in the way illustrated by the code below. As you will see, letting N
to be the data size, by dividing the data in NUM_STREAMS
chunks, the code performs NUM_STREAMS
zero padded and streamed cuFFT calls of size N
. After the cuFFT, you have to combine (sum) the partial results.
#include <stdio.h>
#include <cufft.h>
#define BLOCKSIZE 32
#define NUM_STREAMS 3
/**********/
/* iDivUp */
/*********/
int iDivUp(int a, int b) { return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/******************/
/* SUMMING KERNEL */
/******************/
__global__ void kernel(float2 *vec1, float2 *vec2, float2 *vec3, float2 *out, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < N) {
out[tid].x = vec1[tid].x + vec2[tid].x + vec3[tid].x;
out[tid].y = vec1[tid].y + vec2[tid].y + vec3[tid].y;
}
}
/********/
/* MAIN */
/********/
int main()
{
const int N = 600000;
const int Npartial = N / NUM_STREAMS;
// --- Host input data initialization
float2 *h_in1 = new float2[Npartial];
float2 *h_in2 = new float2[Npartial];
float2 *h_in3 = new float2[Npartial];
for (int i = 0; i < Npartial; i++) {
h_in1[i].x = 1.f;
h_in1[i].y = 0.f;
h_in2[i].x = 1.f;
h_in2[i].y = 0.f;
h_in3[i].x = 1.f;
h_in3[i].y = 0.f;
}
// --- Host output data initialization
float2 *h_out = new float2[N];
// --- Registers host memory as page-locked (required for asynch cudaMemcpyAsync)
gpuErrchk(cudaHostRegister(h_in1, Npartial*sizeof(float2), cudaHostRegisterPortable));
gpuErrchk(cudaHostRegister(h_in2, Npartial*sizeof(float2), cudaHostRegisterPortable));
gpuErrchk(cudaHostRegister(h_in3, Npartial*sizeof(float2), cudaHostRegisterPortable));
// --- Device input data allocation
float2 *d_in1; gpuErrchk(cudaMalloc((void**)&d_in1, N*sizeof(float2)));
float2 *d_in2; gpuErrchk(cudaMalloc((void**)&d_in2, N*sizeof(float2)));
float2 *d_in3; gpuErrchk(cudaMalloc((void**)&d_in3, N*sizeof(float2)));
float2 *d_out1; gpuErrchk(cudaMalloc((void**)&d_out1, N*sizeof(float2)));
float2 *d_out2; gpuErrchk(cudaMalloc((void**)&d_out2, N*sizeof(float2)));
float2 *d_out3; gpuErrchk(cudaMalloc((void**)&d_out3, N*sizeof(float2)));
float2 *d_out; gpuErrchk(cudaMalloc((void**)&d_out, N*sizeof(float2)));
// --- Zero padding
gpuErrchk(cudaMemset(d_in1, 0, N*sizeof(float2)));
gpuErrchk(cudaMemset(d_in2, 0, N*sizeof(float2)));
gpuErrchk(cudaMemset(d_in3, 0, N*sizeof(float2)));
// --- Creates CUDA streams
cudaStream_t streams[NUM_STREAMS];
for (int i = 0; i < NUM_STREAMS; i++) gpuErrchk(cudaStreamCreate(&streams[i]));
// --- Creates cuFFT plans and sets them in streams
cufftHandle* plans = (cufftHandle*) malloc(sizeof(cufftHandle)*NUM_STREAMS);
for (int i = 0; i < NUM_STREAMS; i++) {
cufftPlan1d(&plans[i], N, CUFFT_C2C, 1);
cufftSetStream(plans[i], streams[i]);
}
// --- Async memcopyes and computations
gpuErrchk(cudaMemcpyAsync(d_in1, h_in1, Npartial*sizeof(float2), cudaMemcpyHostToDevice, streams[0]));
gpuErrchk(cudaMemcpyAsync(&d_in2[Npartial], h_in2, Npartial*sizeof(float2), cudaMemcpyHostToDevice, streams[1]));
gpuErrchk(cudaMemcpyAsync(&d_in3[2*Npartial], h_in3, Npartial*sizeof(float2), cudaMemcpyHostToDevice, streams[2]));
cufftExecC2C(plans[0], (cufftComplex*)d_in1, (cufftComplex*)d_out1, CUFFT_FORWARD);
cufftExecC2C(plans[1], (cufftComplex*)d_in2, (cufftComplex*)d_out2, CUFFT_FORWARD);
cufftExecC2C(plans[2], (cufftComplex*)d_in3, (cufftComplex*)d_out3, CUFFT_FORWARD);
for(int i = 0; i < NUM_STREAMS; i++) gpuErrchk(cudaStreamSynchronize(streams[i]));
kernel<<<iDivUp(BLOCKSIZE,N), BLOCKSIZE>>>(d_out1, d_out2, d_out3, d_out, N);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(h_out, d_out, N*sizeof(float2), cudaMemcpyDeviceToHost));
for (int i=0; i<N; i++) printf("i = %i; real(h_out) = %f; imag(h_out) = %f\n", i, h_out[i].x, h_out[i].y);
// --- Releases resources
gpuErrchk(cudaHostUnregister(h_in1));
gpuErrchk(cudaHostUnregister(h_in2));
gpuErrchk(cudaHostUnregister(h_in3));
gpuErrchk(cudaFree(d_in1));
gpuErrchk(cudaFree(d_in2));
gpuErrchk(cudaFree(d_in3));
gpuErrchk(cudaFree(d_out1));
gpuErrchk(cudaFree(d_out2));
gpuErrchk(cudaFree(d_out3));
gpuErrchk(cudaFree(d_out));
for(int i = 0; i < NUM_STREAMS; i++) gpuErrchk(cudaStreamDestroy(streams[i]));
delete[] h_in1;
delete[] h_in2;
delete[] h_in3;
delete[] h_out;
cudaDeviceReset();
return 0;
}
This is the timeline of the above code when run on a Kepler K20c card. As you can see, the computation overlaps the async memory transfers.
