[Edit] OP clarified that only the printed value needs rounding to 2 decimal places.
OP's observation that rounding of numbers "half-way" per a "round to even" or "round away from zero" is misleading. Of 100 "half-way" numbers like 0.005, 0.015, 0.025, ... 0.995, only 4 are typically exactly "half-way": 0.125, 0.375, 0.625, 0.875. This is because floating-point number format use base-2 and numbers like 2.565 cannot be exactly represented.
Instead, sample numbers like 2.565
have as the closest double
value of 2.564999999999999947...
assuming binary64. Rounding that number to nearest 0.01 should be 2.56 rather than 2.57 as desired by OP.
Thus only numbers ending with 0.125 and 0.625 area exactly half-way and round down rather than up as desired by OP. Suggest to accept that and use:
printf("%.2lf",variable); // This should be sufficient
To get close to OP's goal, numbers could be A) tested against ending with 0.125 or 0.625 or B) increased slightly. The smallest increase would be
#include <math.h>
printf("%.2f", nextafter(x, 2*x));
Another nudge method is found with @Clifford.
[Former answer that rounds a double
to the nearest double
multiple of 0.01]
Typical floating-point uses formats like binary64 which employs base-2. "Rounding to nearest mathmatical 0.01 and ties away from 0.0" is challenging.
As @Pascal Cuoq mentions, floating point numbers like 2.555
typically are only near 2.555
and have a more precise value like 2.555000000000000159872...
which is not half way.
@BLUEPIXY solution below is best and practical.
x = round(100.0*x)/100.0;
"The round functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding direction." C11dr §7.12.9.6.
The ((int)(100 * (x + 0.005)) / 100.0)
approach has 2 problems: it may round in the wrong direction for negative numbers (OP did not specify) and integers typically have a much smaller range (INT_MIN
to INT_MAX
) that double
.
There are still some cases when like when double x = atof("1.115");
which end up near 1.12 when it really should be 1.11
because 1.115
, as a double
is really closer to 1.11
and not "half-way".
string x rounded x
1.115 1.1149999999999999911182e+00 1.1200000000000001065814e+00
OP has not specified rounding of negative numbers, assuming y = -f(-x)
.