Honestly, there's a lot of authentication methods and techniques that you can mount into your application and that depends on applications business logic and requirements.
For example Oauth2, LDAP, local authentication, etc.
My answer assumes you are looking for local authentication which means you manage the user's identities in your application.
The server must expose a set of external API allow users and admins
Managing the accounts and how they want to identify themselves to Server to achieve trustable communication.
you will end up creating a DB table holding the user's information.
where the password is hashed for security purposes See How to store the password in the database
let assume app requirements to authenticate users based on one of the following methods:
basic authentication (username, password):
This auth method depends on user credentials sets in Authorization header encoded in base64 and defined inrfc7617, basically when the app receives the user requests its decodes the authorization and re-hash the password to compare it within DB hash if it's matched the user authenticated otherwise return 401 status code to the user.
certificate-based authentication:
This auth method depends on a Digital Certificate to identify a user,
and it's known as x509 auth, so when the app receives the user requests it reads the client's certificate and verifies it that matches the CA Root certificate that is provided to the APP.
bearer token:
This auth method depends on short-lived Access tokens, The bearer token is a cryptic string, usually generated by the server in response to a login request. so when the app receives the user requests it reads the authorization and validates the token to authenticate the user.
However, I'd recommend go-guardian
for authentication library which it does through an extensible set of authentication methods known as strategies. basically Go-Guardian does not mount routes or assume any particular database schema, which maximizes flexibility and allows decisions to be made by the developer.
Setting up a go-guardian authenticator is straightforward.
Here the full example of the above methods.
package main
import (
"context"
"crypto/x509"
"encoding/pem"
"fmt"
"io/ioutil"
"log"
"net/http"
"sync"
"github.com/golang/groupcache/lru"
"github.com/gorilla/mux"
"github.com/shaj13/go-guardian/auth"
"github.com/shaj13/go-guardian/auth/strategies/basic"
"github.com/shaj13/go-guardian/auth/strategies/bearer"
gx509 "github.com/shaj13/go-guardian/auth/strategies/x509"
"github.com/shaj13/go-guardian/store"
)
var authenticator auth.Authenticator
var cache store.Cache
func middleware(next http.Handler) http.HandlerFunc {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
log.Println("Executing Auth Middleware")
user, err := authenticator.Authenticate(r)
if err != nil {
code := http.StatusUnauthorized
http.Error(w, http.StatusText(code), code)
return
}
log.Printf("User %s Authenticated\n", user.UserName())
next.ServeHTTP(w, r)
})
}
func Resource(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Resource!!\n"))
}
func Login(w http.ResponseWriter, r *http.Request) {
token := "90d64460d14870c08c81352a05dedd3465940a7"
user := auth.NewDefaultUser("admin", "1", nil, nil)
cache.Store(token, user, r)
body := fmt.Sprintf("token: %s \n", token)
w.Write([]byte(body))
}
func main() {
opts := x509.VerifyOptions{}
opts.KeyUsages = []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth}
opts.Roots = x509.NewCertPool()
// Read Root Ca Certificate
opts.Roots.AddCert(readCertificate("<root-ca>"))
cache = &store.LRU{
lru.New(100),
&sync.Mutex{},
}
// create strategies
x509Strategy := gx509.New(opts)
basicStrategy := basic.New(validateUser, cache)
tokenStrategy := bearer.New(bearer.NoOpAuthenticate, cache)
authenticator = auth.New()
authenticator.EnableStrategy(gx509.StrategyKey, x509Strategy)
authenticator.EnableStrategy(basic.StrategyKey, basicStrategy)
authenticator.EnableStrategy(bearer.CachedStrategyKey, tokenStrategy)
r := mux.NewRouter()
r.HandleFunc("/resource", middleware(http.HandlerFunc(Resource)))
r.HandleFunc("/login", middleware(http.HandlerFunc(Login)))
log.Fatal(http.ListenAndServeTLS(":8080", "<server-cert>", "<server-key>", r))
}
func validateUser(ctx context.Context, r *http.Request, userName, password string) (auth.Info, error) {
// here connect to db or any other service to fetch user and validate it.
if userName == "stackoverflow" && password == "stackoverflow" {
return auth.NewDefaultUser("stackoverflow", "10", nil, nil), nil
}
return nil, fmt.Errorf("Invalid credentials")
}
func readCertificate(file string) *x509.Certificate {
data, err := ioutil.ReadFile(file)
if err != nil {
log.Fatalf("error reading %s: %v", file, err)
}
p, _ := pem.Decode(data)
cert, err := x509.ParseCertificate(p.Bytes)
if err != nil {
log.Fatalf("error parseing certificate %s: %v", file, err)
}
return cert
}
Usage:
curl -k https://127.0.0.1:8080/login -u stackoverflow:stackoverflow
token: 90d64460d14870c08c81352a05dedd3465940a7
- Authenticate with a token:
curl -k https://127.0.0.1:8080/resource -H "Authorization: Bearer 90d64460d14870c08c81352a05dedd3465940a7"
Resource!!
- Authenticate with a user credential:
curl -k https://127.0.0.1:8080/resource -u stackoverflow:stackoverflow
Resource!!
- Authenticate with a user certificate:
curl --cert client.pem --key client-key.pem --cacert ca.pem https://127.0.0.1:8080/resource
Resource!!
You can enable multiple authentication methods at once. You should usually use at least two methods