I have the following code:
#!/usr/bin/env python
from scipy.optimize import fsolve
import math
h = 6.634e-27
k = 1.38e-16
freq1 = 88633.9360e6
freq2 = 88631.8473e6
freq3 = 88630.4157e6
def J(freq,T):
return (h*freq/k)/(math.exp(h*freq/(k*T))-1)
def equations(x,y,z,w,a,b,c,d):
f1 = a*(J(freq1,y)-J(freq1,2.73))*(1-math.exp(-a*z))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z))
f2 = b*(J(freq3,w)-J(freq3,2.73))*(1-math.exp(-b*z))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z))
f3 = c*(J(freq3,w)-J(freq3,2.73))*(1-math.exp(-b*z))-(J(freq1,y)-J(freq1,2.73))*(1-math.exp(-a*z))
f4 = d*(J((freq3+freq1)/2,(y+w)/2)-J((freq3+freq1)/2,2.73))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z))
return (f1,f2,f3,f4)
So, I have defined the equations in the above code. The system of 4-non-linear equations includes 4 variables, a->d, that are predetermined and 4 unknowns, x,y,z and w. I wish to somehow define a->d and feed them into fsolve, thereby creating unique solutions for x,y,z and w. Is this possible?