I want to remove redundant tuples but preserve the order of appearance. I looked at similar questions. This question Find unique rows in numpy.array looked very promising but somehow it did not work for me.
I could use pandas as in this answer (https://stackoverflow.com/a/14089586/566035) but I prefer not using pandas so that the py2exe generated executable will be small.
import numpy as np
data = [('a','z'), ('a','z'), ('a','z'), ('1','z'), ('e','z'), ('c','z')]
#What I want is:
array([['a', 'z'],
['1', 'z'],
['e', 'z'],
['c', 'z']],
dtype='|S1')
#What I have tried:
# (1) numpy.unique, order not preserved
np.unique(data)
array([['a', 'z'],
['c', 'z'],
['1', 'z'],
['e', 'z']],
dtype='|S1')
# (2) python set, order not preserved
set(data)
set([('1', 'z'), ('a', 'z'), ('c', 'z'), ('e', 'z')])
# (3) answer here : https://stackoverflow.com/a/16973510/566035, order not preserved
a = np.array(data)
b = np.ascontiguousarray(a).view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
_, idx = np.unique(b, return_index=True)
a[idx]
array([['1', 'z'],
['a', 'z'],
['c', 'z'],
['e', 'z']],
dtype='|S1')