I'm using numba to speed up my code which is working fine without numba. But after using @jit, it crashes with this error:
Traceback (most recent call last):
File "C:\work_asaaki\code\gbc_classifier_train_7.py", line 54, in <module>
gentlebooster.train(X_train, y_train, boosting_rounds)
File "C:\work_asaaki\code\gentleboost_c_class_jit_v7_nolimit.py", line 298, in train
self.g_per_round, self.g = train_function(X, y, H)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 152, in _compile_for_args
return self.jit(sig)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 143, in jit
return self.compile(sig, **kws)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 250, in compile
locals=self.locals)
File "C:\Anaconda\lib\site-packages\numba\compiler.py", line 183, in compile_bytecode
flags.no_compile)
File "C:\Anaconda\lib\site-packages\numba\compiler.py", line 323, in native_lowering_stage
lower.lower()
File "C:\Anaconda\lib\site-packages\numba\lowering.py", line 219, in lower
self.lower_block(block)
File "C:\Anaconda\lib\site-packages\numba\lowering.py", line 254, in lower_block
raise LoweringError(msg, inst.loc)
numba.lowering.LoweringError: Internal error:
NotImplementedError: ('cast', <llvm.core.Instruction object at 0x000000001801D320>, slice3_type, int64)
File "gentleboost_c_class_jit_v7_nolimit.py", line 103
Line 103 is below, in a loop:
weights = np.empty([n,m])
for curr_n in range(n):
weights[curr_n,:] = 1.0/(n) # this is line 103
where n
is a constant already defined somewhere above in my code.
How can I remove the error? What "lowering" is going on? I'm using Anaconda 2.0.1 with Numba 0.13.x and Numpy 1.8.x on a 64-bit machine.