Use COUNT(matches.match_id)
instead of count(*)
, as when using joins it's best to not use the *
as it does extra computation. Using columns from the join are the best way ensure you are not requesting any other operations. (not a problem on MySql InnerJoin, my bad).
Also you should verify that you have all keys defragmented, and enough ram free for the index to load in memory
Update 1:
Try to add a composed index for match_id,hero_id
as it should give better performance.
ALTER TABLE `matches_heroes` ADD KEY `match_id_hero_id` (`match_id`,`hero_id`)
Update 2:
I wasn't satisfied with the accepted answer, that mysql is that slow for just 2 mill records and I runed benchmarks on my ubuntu PC (i7 processor, with standard HDD).
-- pre-requirements
CREATE TABLE seq_numbers (
number INT NOT NULL
) ENGINE = MYISAM;
DELIMITER $$
CREATE PROCEDURE InsertSeq(IN MinVal INT, IN MaxVal INT)
BEGIN
DECLARE i INT;
SET i = MinVal;
START TRANSACTION;
WHILE i <= MaxVal DO
INSERT INTO seq_numbers VALUES (i);
SET i = i + 1;
END WHILE;
COMMIT;
END$$
DELIMITER ;
CALL InsertSeq(1,200000)
;
ALTER TABLE seq_numbers ADD PRIMARY KEY (number)
;
-- create tables
-- DROP TABLE IF EXISTS `matches`
CREATE TABLE `matches` (
`match_id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`start_time` int(10) unsigned NOT NULL,
PRIMARY KEY (`match_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
;
CREATE TABLE `heroes` (
`hero_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
`name` char(40) NOT NULL,
PRIMARY KEY (`hero_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
;
CREATE TABLE `matches_heroes` (
`match_id` bigint(20) unsigned NOT NULL,
`hero_id` smallint(6) unsigned NOT NULL,
PRIMARY KEY (`match_id`,`hero_id`),
KEY (match_id),
KEY (hero_id),
CONSTRAINT `matches_heroes_ibfk_2` FOREIGN KEY (`hero_id`) REFERENCES `heroes` (`hero_id`),
CONSTRAINT `matches_heroes_ibfk_1` FOREIGN KEY (`match_id`) REFERENCES `matches` (`match_id`) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=MyISAM DEFAULT CHARSET=utf8
;
-- insert DATA
-- 100
INSERT INTO heroes(name)
SELECT SUBSTR(CONCAT(char(RAND()*25+65),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97),char(RAND()*25+97)),1,RAND()*9+4) as RandomName
FROM seq_numbers WHERE number <= 100
-- 200000
INSERT INTO matches(start_time)
SELECT rand()*1000000
FROM seq_numbers WHERE number <= 200000
-- 2000000
INSERT INTO matches_heroes(hero_id,match_id)
SELECT a.hero_id, b.match_id
FROM heroes as a
INNER JOIN matches as b ON 1=1
LIMIT 2000000
-- warm-up database, load INDEXes in ram (optional, works only for MyISAM tables)
LOAD INDEX INTO CACHE matches_heroes,matches,heroes
-- get random hero_id
SET @randHeroId=(SELECT hero_id FROM matches_heroes ORDER BY rand() LIMIT 1);
-- test 1
SELECT SQL_NO_CACHE @randHeroId,COUNT(*) AS match_count
FROM matches as a
INNER JOIN matches_heroes as b ON a.match_id = b.match_id
WHERE b.hero_id = @randHeroId
; -- Time: 0.039s
-- test 2: adding some complexity
SET @randName = (SELECT `name` FROM heroes WHERE hero_id = @randHeroId LIMIT 1);
SELECT SQL_NO_CACHE @randName, COUNT(*) AS match_count
FROM matches as a
INNER JOIN matches_heroes as b ON a.match_id = b.match_id
INNER JOIN heroes as c ON b.hero_id = c.hero_id
WHERE c.name = @randName
; -- Time: 0.037s
Conclusion: The test results are about 20x faster, and my server load was about 80% before testing as it's not a dedicated mysql server and had other cpu intensive tasks running, so if you run the whole script (from above) and get lower results it can be because:
- you have a shared host, and the load is too big. In this case there isn't much you can do: you either complain to your current host, pay for a better host/vm or try another host
- your configured key_buffer_size(for MyISAM) or innodb_buffer_pool_size(for innoDB) is too small, the optimum size would be over 150MB
- your available ram is not enough, you would require about 100 - 150 mb of ram for the indexes to be loaded into memory. solution: free up some ram or buy more of it
Note that by using the test script, the generating of new data rules out the index fragmentation problem.
Hope this helps, and ask if you have issues in testing this.
obs:
SELECT SQL_NO_CACHE COUNT(*) AS match_count
FROM matches INNER JOIN matches_heroes ON matches.match_id = matches_heroes.match_id
WHERE hero_id = 5`
is the equivalent to:
SELECT SQL_NO_CACHE COUNT(*) AS match_count
FROM matches_heroes
WHERE hero_id = 5`
So you wouldn't require a join, if that's the count you need, but I'm guessing that was just an example.