A callable object is supposed to be so by defining __call__
. A class is supposed to be an object… or at least with some exceptions. This exception is what I'm failing to formally clarify, thus this question posted here.
Let A
be a simple class:
class A(object):
def call(*args):
return "In `call`"
def __call__(*args):
return "In `__call__`"
The first function is purposely named “call”, to make clear the purpose is the comparison with the other.
Let's instantiate it and forget about the expression it implies:
a = A() # Think of it as `a = magic` and forget about `A()`
Now what's worth:
print(A.call())
print(a.call())
print(A())
print(a())
Result in:
>>> In `call`
>>> In `call`
>>> <__main__.A object at 0xNNNNNNNN>
>>> In `__call__`
The output (third statement not running __call__
) does not come as a surprise, but when I think every where it is said “Python class are objects”…
This, more explicit, however run __call__
print(A.__call__())
print(a.__call__())
>>> “In `__call__`”
>>> “In `__call__`”
All of this is just to show how finally A()
may looks strange.
There are exception in Python rules, but the documentation about “object.call” does not say a lot about __call__
… not more than that:
3.3.5. Emulating callable objects
object.__call__(self[, args...])
Called when the instance is “called” as a function; […]
But how do Python tell “it's called as a function” and honour or not the object.__call__
rule?
This could be a matter of type, but even type has object
as its base class.
Where can I learn more (and formally) about it?
By the way, is there any difference here between Python 2 and Python 3?
----- %< ----- edit ----- >% -----
Conclusions and other experiments after one answer and one comment
Update #1
After @Veedrac's answer and @chepner's comment, I came to this other test, which complete the comments from both:
class M(type):
def __call__(*args):
return "In `M.__call__`"
class A(object, metaclass=M):
def call(*args):
return "In `call`"
def __call__(*args):
return "In `A.__call__`"
print(A())
The result is:
>>> In `M.__call__`
So it seems that's the meta‑class which drives the “call” operations. If I understand correctly, the meta‑class does not matter only with class, but also with classes instances.
Update #2
Another relevant test, which shows this is not an attribute of the object which matters, but an attribute of the type of the object:
class A(object):
def __call__(*args):
return "In `A.__call__`"
def call2(*args):
return "In `call2`"
a = A()
print(a())
As expected, it prints:
>>> In `A.__call__`
Now this:
a.__call__ = call2
print(a())
It prints:
>>> In `A.__call__`
The same a before the attribute was assigned. It does not print In call2
, it's still In A.__call__
. That's important to note and also explain why that's the __call__
of the meta‑class which was invoked (keep in mind the meta‑class is the type of the class object). The __call__
used to call as function, is not from the object, it's from its type.