I really recommend to write two separate macros for this, just as you would write two differently named functions for the two signatues in C. (I would rather write macros that tell you what level they are explicitly, like ERROR(...)
, WARNING(..)
etc. than introduce a default argument.)
That said, there are two possibilities to achieve what you want.
C11 _Generic
selections
The _Generic
keyword was introduced with C11. It allows to expand macros in a switch
-like manner according to the type of an argument; Robert Gamble has a good introduction.
You want to distinguish two cases: First argument is a string and first argument is an integer. A drawback is that in _Generic
, a string literal isn't treated as char *
or const char *
, but as char[size]
. For example, "%d"
is a char[3]
.
In your case, we can get around this by treating a string as anything that isn't an integer. The compiler will sort out all non-string, non-integer arguments later. So:
#define PRINT(fmt, ...) \
_Generic(fmt, \
int: syslog(fmt, __VA_ARGS__), \
default: syslog(3, fmt, __VA_ARGS__))
There are drawbacks: You can't have a single-argument call, because that would leave a comma in the call. (gcc's ##__VA_ARGS__
gets around that.) And the _Generic
keyword is not yet widely implemented; this solution will make your code highly unportable.
String introspection hack
Ordinary C99 macros have no information on their type. C code can make a guess, however. Here's an example that checks whether a macro argument is a string literal:
#define PRINT(sev, ...) \
if (#sev[0] == '"') syslog(3, sev, __VA_ARGS); \
else syslog(sev, __VA_ARGS__);
This works -- almost. The compiler will probably compile the constant condition away and only gererate code for one of the branches. But it will parse the branches anyway and the dead branch will have a wrong function signature, which will generate warnings.
You can get around this by writing a variadic front-end function in C. Here's an example that works:
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#define HEAD(X, ...) X
#define STR_(x) #x
#define STR(x) STR_(x)
#define PRINT(...) \
msg(*STR(HEAD(__VA_ARGS__)) == '"', __VA_ARGS__)
int msg(int dflt, ...)
{
va_list va;
int sev = 3;
const char *fmt;
va_start(va, dflt);
if (!dflt) sev = va_arg(va, int);
fmt = va_arg(va, const char *);
fprintf(stderr, "[%d] ", sev);
vfprintf(stderr, fmt, va);
fprintf(stderr, "\n");
va_end(va);
return 0;
}
int main()
{
PRINT(1, "Incompatible types %s and %s", "Apple", "Orange");
PRINT("Microphone test: %d, %d, %d, ...", 1, 2, 3);
return 0;
}
This solution is dangerous, because the msg
function is only safe if it is generated by the macro. And the macro is only safe if the format string is a string literal beginning with a double quote. The macro expands the arguments by one boolean argument to the left and hides the argument incompatibility in a variadic argument list.
It may be a nice trick, but you'll be better off having separate, clearly named macros.