I am trying to update temperature time series by combining 2 CSV files that may have duplicate rows at times.
I have tried to implement drop_duplicates
but it's not working for me.
Here is an example of what I'm trying to do:
import pandas as pd
import numpy as np
from pandas import DataFrame, Series
dfA = DataFrame({'date' : Series(['1/1/10','1/2/10','1/3/10','1/4/10'], index=[0,1,2,3]),
'a' : Series([60,57,56,50], index=[0,1,2,3]),
'b' : Series([80,73,76,56], index=[0,1,2,3])})
print("dfA")
print(dfA)
dfB = DataFrame({'date' : Series(['1/3/10','1/4/10','1/5/10','1/6/10'], index=[0,1,2,3]),
'a' : Series([56,50,59,75], index=[0,1,2,3]),
'b' : Series([76,56,73,89], index=[0,1,2,3])})
print("dfB")
print(dfB)
dfC = dfA.append(dfB)
print(dfC.duplicated())
dfC.drop_duplicates()
print("dfC")
print(dfC)
And this is the output:
dfA
a b date
0 60 80 1/1/10
1 57 73 1/2/10
2 56 76 1/3/10
3 50 56 1/4/10
dfB
a b date
0 56 76 1/3/10
1 50 56 1/4/10
2 59 73 1/5/10
3 75 89 1/6/10
0 False
1 False
2 False
3 False
0 True
1 True
2 False
3 False
dtype: bool
dfC
a b date
0 60 80 1/1/10
1 57 73 1/2/10
2 56 76 1/3/10
3 50 56 1/4/10
0 56 76 1/3/10
1 50 56 1/4/10
2 59 73 1/5/10
3 75 89 1/6/10
How do I update a time series with overlapping data and not have duplicates?