Suppose you have two sets, such as {a,b} xy {c,d,e}, return all the combinations (axyc, axyd, axye, bxyc, bxyd, bxye). I know there is a similar one, but I am not satisfied about answers Cartesian product of an arbitrary number of sets, my question is that if there is a common approach to solve it?
Asked
Active
Viewed 99 times
1 Answers
2
Yes, there is an approach called "Backtracking", it is a common pattern to solve this kind of problem. check it here: http://en.wikipedia.org/wiki/Backtracking
The following is the code:
public static void main(String[] args) {
// TODO Auto-generated method stub
List<List<Character>> lists = new ArrayList<List<Character>>();
List<Character> l1 = new ArrayList<Character>();
l1.add('a'); l1.add('b');; l1.add('c');
List<Character> l2 = new ArrayList<Character>();
l2.add('#');
List<Character> l3 = new ArrayList<Character>();
l3.add('1'); l3.add('2');
lists.add(l1); lists.add(l2); lists.add(l3);
List<String> result = new ArrayList<String>();
GenerateCombinations(lists, result, 0, new StringBuilder());
System.out.println(result);
}
public static void GenerateCombinations(List<List<Character>> Lists,
List<String> result, int listIndex,
StringBuilder combo) {
if (listIndex == Lists.size()) {
result.add(combo.toString());
} else {
for (int i = 0; i < Lists.get(listIndex).size(); ++i) {
//add new value
combo.append(Lists.get(listIndex).get(i));
//get possible values in next list.
GenerateCombinations(Lists, result, listIndex + 1, combo);
//set back to old state.
combo.deleteCharAt((combo.length() - 1));
}
}
}

David
- 1,646
- 17
- 22