I'm using the sqlalchemy
that allows sql queries for the recently released 0.14.1 version of pandas.
import pandas as pd
from dateutil import parser
from sqlalchemy import create_engine
import datetime
a=[['Datetime', 'Now Date', 'numbers', 'mixed'], ['1/2/2014', datetime.datetime.now(),6, 'z1'], ['1/3/2014', datetime.datetime.now(), 3, 'z1']]
df = pd.DataFrame(a[1:],columns=a[0])
df['Datetime']=df['Datetime'].map(lambda x: parser.parse(x))
engine=create_engine('sqlite:///:memory:')
df.to_sql('db_table',engine, index=False)
df_new=pd.read_sql_query("SELECT * FROM db_table ",engine)
>>> df.dtypes
Datetime datetime64[ns]
Now Date datetime64[ns]
numbers int64
mixed object
dtype: object
>>> df_new.dtypes
Datetime object
Now Date object
numbers int64
mixed object
dtype: object
As you can see, my original datetime
format is lost when feeding it into the engine. But pandas gives you a way to get it back by parsing.
df_new=pd.read_sql_query("SELECT * FROM db_table ",engine, parse_dates=['Datetime','Now Date'])
>>> df_new.dtypes
Datetime datetime64[ns]
Now Date datetime64[ns]
numbers int64
mixed object
dtype: object
The problem is i'm feeding different kinds of datetimes
into the engine with different column names, I can't manually specify each column name. I have too many things to parse and it is constantly changing. I'm looking for a solution that is the equivalent of something like this:
df_new=pd.read_sql_query("SELECT * FROM db_table ",engine, parse_dates=['*Date*'])