The theoretical (peak) value is based on the capability of each individual core in the cluster, which depends on clock frequency, number of floating point units, parallel instruction issuing capacity, vector register sizes, etc. which are design characteristics of the core. The flops/s count for each core in the cluster is then aggregated to get the cluster flops/s count.
For a car the equivalent theoretical performance would be the maximum speed it can reach given the specification of its engine.
For a program to reach the theoretical count, it has to perform specific operations in a specific order so that the instruction-level parallelism is maximum and all floating-point units are working constantly without delay due to synchronization or memory access, etc. (See this SO question for more insights)
For a car, it is equivalent to measuring top speed on a straight line with no wind.
But of course, chances that such a program computes something of interest are small. So benchmarks like HPL use actual problems in linear algebra, with a highly optimized and tuned implementation, but which is still imperfect due to IO operations and the fact that the order of operations is not optimal.
For a car, it could be compared to measuring the top average speed on a race track with straight lines, curves, etc.
If the program requires a lot of network, or disk communications, which are operations that require a lot of clock cycle, then the CPU has often to stay idle waiting for data before it can perform arithmetic operations, effectively wasting away a lot of computing power. Then, the actual performance is estimated by dividing the number of floating points operations (addition and multiplications) the program is performing by the time it takes to perform them.
For a car, this would correspond to measuring the top average speed in town with red lights, etc. by calculating the length of the trip divided by the time needed to accomplish it.