First off, I must say that this is not a BUG. What your regex is doing is that it's trying all the possibilities due to the nested repeating patters. Sometimes this process can gobble up a lot of time and resources and when it gets really bad, it’s called catastrophic backtracking.
This is the code of findall
function in python source code:
def findall(pattern, string, flags=0):
"""Return a list of all non-overlapping matches in the string.
If one or more groups are present in the pattern, return a
list of groups; this will be a list of tuples if the pattern
has more than one group.
Empty matches are included in the result."""
return _compile(pattern, flags).findall(string)
As you see it just use the compile() function, so based on _compile()
function that actually use Traditional NFA
that python use for its regex matching, and base on
this short explain about backtracking in regular expression in Mastering Regular Expressions, Third Edition, by Jeffrey E. F. Friedl!
The essence of an NFA
engine is this: it considers each subexpression or component in turn, and whenever it needs to decide between two equally viable options,
it selects one and remembers the other to return to later if need be.
Situations where it has to decide among courses of action include anything with a
quantifier (decide whether to try another match), and alternation (decide which
alter native to try, and which to leave for later).
Whichever course of action is attempted, if it’s successful and the rest of the regex
is also successful, the match is finished. If anything in the rest of the regex eventually causes failure, the regex engine knows it can backtrack to where it chose the
first option, and can continue with the match by trying the other option. This way,
it eventually tries all possible permutations of the regex (or at least as many as
needed until a match is found).
Let's go inside your pattern: So you have r'(\d+(,)?)+/$'
with this string '12345121,223456,123123,3234,4523,523523'
we have this steps:
- At first, the first part of your string (
12345121
) is matched with \d+
, then ,
is matched with (,)?
.
- Then based on first step, the whole string is match due to
+
after the grouping ((\d+(,)?)+
)
- Then at the end, there is nothing for
/$
to be matched. Therefore, (\d+(,)?)+
needs to "backtrack" to one character before the last for check for /$
. Again, it don't find any proper match, so after that it's (,
)'s turn to backtrack, then \d+
will backtrack, and this backtracking will be continue to end till it return None
.
So based on the length of your string it takes time, which in this case is very high, and it create a nested quantifiers entirely!
As an approximately benchmarking, in this case, you have 39 character so you need 3^39 backtracking attempts (we have 3 methods for backtrack).
Now for better understanding, I measure the runtime of the program while changing the length of the string:
'12345121,223456,123123,3234,4523,' 3^33 = 5.559060567×10¹⁵
~/Desktop $ time python ex.py
real 0m3.814s
user 0m3.818s
sys 0m0.000s
'12345121,223456,123123,3234,4523,5' 3^24 = 1.66771817×10¹⁶ #X2 before
~/Desktop $ time python ex.py
real 0m5.846s
user 0m5.837s
sys 0m0.015s
'12345121,223456,123123,3234,4523,523' 3^36= 1.500946353×10¹⁷ #~10X before
~/Desktop $ time python ex.py
real 0m15.796s
user 0m15.803s
sys 0m0.008s
So to avoid this problem you can use one of the below ways:
- Atomic grouping (Currently doesn't support in Python, A RFE was created to add it to Python 3)
- Reduction the possibility of backtracking by breaking the nested groups to separate regexes.