I am self studying the book "Introduction to Algorithms" by Cormen et alli. In their book, they use pseudo-code which assumes that arrays are passed by pointer (by reference). This is different from R (where objects are passed by value), so I am having some difficulties trying to translate their pseudo-code as close as possible, especially when recursion is involved. Most of the time, I have to implement things a lot differently.
For example, with the Merge Sort algorithm, they define the Merge Function (which I think I have translated correctly) and the recursive MergeSort function (where direct translation to R does not work).
The merge function in pseudo-code is as follows where: A is an array and p, q, and r are indices into the array such that p < q < r. The procedure assumes that the subarrays A[p:q] and A[q+1:r] are in sorted order. It merges them to form a single sorted subarray that replaces the current subarray A[p:r]
Merge(A, p, q, r)
n1 = q - p + 1
n2 = r - q
let L[1...n1+1] and R[1...n2+1] be new arrays
for i = 1 to n1
L[i] = A[p+i-1]
for j = 1 to n2
R[j] = A[q+j]
L[n1+1] = infinite
R[n2+1] = infinite
i=1
j=1
for k = p to r
if L[i] <= R[j]
A[j] = L[i]
i = i + 1
else
A[k] = R[j]
j = j + 1
Which I've translated to R as:
Merge <- function(a, p, q, r){
n1 <- q - p + 1
n2 <- r - q
L <- numeric(n1+1)
R <- numeric(n2+1)
for(i in 1:n1){
L[i] <- a[p+i-1]
}
for(j in 1:n2){
R[j] <- a[q+j]
}
L[n1+1] <- Inf
R[n2+1] <- Inf
i=1
j=1
for(k in p:r){
if(L[i] <= R[j]){
a[k] <- L[i]
i <- i +1
}else{
a[k] <- R[j]
j <- j+1
}
}
a
}
And it seems to work fine.
Merge(c(1,3,5, 2,4,6), 1, 3, 6)
[1] 1 2 3 4 5 6
Now the MergeSort function is defined in pseudo-code as follows:
MergeSort(A, p, r)
if p < r
q = (p+r)/2
MergeSort(A, p, q)
MergeSort(A, q+1, r)
Merge(A, p, q, r)
This assumes that A is passed by reference and that every change is visible to every recursive call, which is not true in R.
So, given the Merge
function defined above, how you would implement the MergeSort
function in R to obtain the correct results? (if possible, and preferable, but not necessary, somewhat similar to the pseudo-code)