If the values near zero are very close to zero, you'll have an issue with rounding (could be rounding error up or down) in a summation, or any range of numbers if summing a large set of numbers. One way around this issue is to use a summation function that only adds numbers with the same exponent (until you call getsum() to get the total sum, where it keeps exponents as close as possible). Example C++ class to do this (note code was compiled using Visual Studio, written before uint64_t was available).
// SUM contains an array of 2048 IEEE 754 doubles, indexed by exponent,
// used to minimize rounding / truncation issues when doing
// a large number of summations
class SUM{
double asum[2048];
public:
SUM(){for(int i = 0; i < 2048; i++)asum[i] = 0.;}
void clear(){for(int i = 0; i < 2048; i++)asum[i] = 0.;}
// getsum returns the current sum of the array
double getsum(){double d = 0.; for(int i = 0; i < 2048; i++)d += asum[i];
return(d);}
void addnum(double);
};
void SUM::addnum(double d) // add a number into the array
{
size_t i;
while(1){
// i = exponent of d
i = ((size_t)((*(unsigned long long *)&d)>>52))&0x7ff;
if(i == 0x7ff){ // max exponent, could be overflow
asum[i] += d;
return;
}
if(asum[i] == 0.){ // if empty slot store d
asum[i] = d;
return;
}
d += asum[i]; // else add slot to d, clear slot
asum[i] = 0.; // and continue until empty slot
}
}
Example program that uses the sum class:
#include <iostream>
#include <iomanip>
using namespace std;
static SUM sum;
int main()
{
double dsum = 0.;
double d = 1./5.;
unsigned long i;
for(i = 0; i < 0xffffffffUL; i++){
sum.addnum(d);
dsum += d;
}
cout << "dsum = " << setprecision(16) << dsum << endl;
cout << "sum.getsum() = " << setprecision(16) << sum.getsum() << endl;
cout << "0xffffffff * 1/5 = " << setprecision(16) << d * (double)0xffffffffUL << endl;
return(0);
}