I have a dataframe that looks like this:
Out[14]:
impwealth indweight
16 180000 34.200
21 384000 37.800
26 342000 39.715
30 1154000 44.375
31 421300 44.375
32 1210000 45.295
33 1062500 45.295
34 1878000 46.653
35 876000 46.653
36 925000 53.476
I want to calculate the weighted median of the column impwealth
using the frequency weights in indweight
. My pseudo code looks like this:
# Sort `impwealth` in ascending order
df.sort('impwealth', 'inplace'=True)
# Find the 50th percentile weight, P
P = df['indweight'].sum() * (.5)
# Search for the first occurrence of `impweight` that is greater than P
i = df.loc[df['indweight'] > P, 'indweight'].last_valid_index()
# The value of `impwealth` associated with this index will be the weighted median
w_median = df.ix[i, 'impwealth']
This method seems clunky, and I'm not sure it's correct. I didn't find a built in way to do this in pandas reference. What is the best way to go about finding weighted median?