The value of 111^11
(about 3.1518e+022
) exceeds the maximum integer that is guaranteed to be represented exactly as a double
, which is 2^53
(about 9.0072e+015
). So the result is spoilt by insufficient numerical precision.
To achieve the correct result, use symbolic computation:
>> syms x y z
>> r = mod(x^y, z);
>> subs(r, [x y z], [111 11 143])
ans =
67
Alternatively, for this specific operation (modulo of a large number that is expressed as a product of small numbers), you can do the computation very easily using the following fact (where ∗
denotes product):
mod(a∗b, z) = mod(mod(a,z)∗mod(b,z), z)
That is, you can apply the modulo operation to factors of your large number and the final result is unchanged. If you choose factors sufficiently small so that they can be represented exactly as double
, you can do the computation numerically without any loss of precision.
For example: using the decomposition 111^11 = 111^4*111^4*111^3, since all factors are small enough, gives the correct result:
>> mod((mod(111^4, 143))^2 * mod(111^3, 143), 143)
ans =
67
Similarly, using 111^2 and 111 as factors,
>> mod((mod(111^2, 143))^5 * mod(111, 143), 143)
ans =
67