You can calculate the correlation matrix and ask if only the diagonal elements are 1
:
(np.corrcoef(M)==1).sum()==M.shape[0]
In [66]:
M = np.random.random((5,8))
In [72]:
(np.corrcoef(M)==1).sum()==M.shape[0]
Out[72]:
True
This if you want to do a similar thing for the columns:
(np.corrcoef(M, rowvar=0)==1).sum()==M.shape[1]
or without numpy
at all:
len(set(map(tuple,M)))==len(M)
Fiter out the unique rows and then test if the resultant is same as M
is an overkill:
In [99]:
%%timeit
b = np.ascontiguousarray(M).view(np.dtype((np.void, M.dtype.itemsize * M.shape[1])))
_, idx = np.unique(b, return_index=True)
unique_M = M[idx]
unique_M.shape==M.shape
10000 loops, best of 3: 54.6 µs per loop
In [100]:
%timeit len(set(map(tuple,M)))==len(M)
10000 loops, best of 3: 24.9 µs per loop