In your same situation, I ended up doing my own function to create a grid of graphs. First, I save to disk all the graphs via matplotlib. Then, I create a collage of the graphs.
from typing import List, Tuple
from PIL import Image
import os
def find_multiples(number : int):
multiples = set()
for i in range(number - 1, 1, -1):
mod = number % i
if mod == 0:
tup = (i, int(number / i))
if tup not in multiples and (tup[1], tup[0]) not in multiples:
multiples.add(tup)
if len(multiples) == 0:
mod == number % 2
div = number // 2
multiples.add((2, div + mod))
return list(multiples)
def get_smallest_multiples(number : int, smallest_first = True) -> Tuple[int, int]:
multiples = find_multiples(number)
smallest_sum = number
index = 0
for i, m in enumerate(multiples):
sum = m[0] + m[1]
if sum < smallest_sum:
smallest_sum = sum
index = i
result = list(multiples[i])
if smallest_first:
result.sort()
return result[0], result[1]
def create_collage(listofimages : List[str], n_cols : int = 0, n_rows: int = 0,
thumbnail_scale : float = 1.0, thumbnail_width : int = 0, thumbnail_height : int = 0):
n_cols = n_cols if n_cols >= 0 else abs(n_cols)
n_rows = n_rows if n_rows >= 0 else abs(n_rows)
if n_cols == 0 and n_rows != 0:
n_cols = len(listofimages) // n_rows
if n_rows == 0 and n_cols != 0:
n_rows = len(listofimages) // n_cols
if n_rows == 0 and n_cols == 0:
n_cols, n_rows = get_smallest_multiples(len(listofimages))
thumbnail_width = 0 if thumbnail_width == 0 or n_cols == 0 else round(thumbnail_width / n_cols)
thumbnail_height = 0 if thumbnail_height == 0 or n_rows == 0 else round(thumbnail_height/n_rows)
all_thumbnails : List[Image.Image] = []
for p in listofimages:
thumbnail = Image.open(p)
if thumbnail_width * thumbnail_scale < thumbnail.width:
thumbnail_width = round(thumbnail.width * thumbnail_scale)
if thumbnail_height * thumbnail_scale < thumbnail.height:
thumbnail_height = round(thumbnail.height * thumbnail_scale)
thumbnail.thumbnail((thumbnail_width, thumbnail_height))
all_thumbnails.append(thumbnail)
new_im = Image.new('RGB', (thumbnail_width * n_cols, thumbnail_height * n_rows), 'white')
i, x, y = 0, 0, 0
for col in range(n_cols):
for row in range(n_rows):
if i > len(all_thumbnails) - 1:
continue
print(i, x, y)
new_im.paste(all_thumbnails[i], (x, y))
i += 1
y += thumbnail_height
x += thumbnail_width
y = 0
extension = os.path.splitext(listofimages[0])[1]
if extension == "":
extension = ".jpg"
destination_file = os.path.join(os.path.dirname(listofimages[0]), f"Collage{extension}")
new_im.save(destination_file)
Example usage:
listofgraphs = os.listdir("path with all saved graphs")
create_collage(listofimages)
The function finds the two smallest integer multiples of the length of the input list of graphs (e.g. for 12, it returns 3 and 4 rather than 2 and 6) and creates a grid, where the first number is always the smallest of the multiples and it is taken to be the number of columns (i.e. by default the grid gets fewer columns than rows; for 12 images, you get a 4x3 matrix, 4 rows, 3 columns). This it can be customized via the smallest_first
argument (only exposed in get_smallest_multiples()
).
Optional arguments also allow to force a number of rows/columns.
The final image size is the sum of the sizes of the single images, but an optional thumbnail_scale
argument allows to specify a percentage of scaling for all the thumbnails (defaults to 1.0, i.e. 100%, no scaling).
The final image is saved in the same folder where the first of the input images is.
This function works well when the size of the images are all roughly the same. I have not covered more complex scenarios.