Following an earlier thread I boiled down my problem to it's bare bones, in migrating from a Perl script to a Python one I found a huge performance issue with slurping files in Python. Running this on Ubuntu Server.
NB: this is not a X vs. Y thread I need to know fundamentally if this is how it is or if I'm doing something stupid.
I created my test data, 50,000 10kb files (this mirrors the avg file size of what I'm processing):
mkdir 1
cd 1
for i in {1..50000}; do dd if=/dev/zero of=$i.xml bs=1 count=10000; done
cd ..
cp -r 1 2
Created my 2 scripts as simply as possible:
Perl
foreach my $file (<$ARGV[0]/*.xml>){
my $fh;
open($fh, "< $file");
my $contents = do { local $/; <$fh> };
close($fh);
}
Python
import glob, sys
for file in glob.iglob(sys.argv[1] + '/*.xml'):
with open(file) as x:
f = x.read()
I then cleared the caches and ran my 2 slurp scripts, between each run I cleaned the caches again using:
sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
Then monitored to ensure it was reading everything from disk each time:
sudo iotop -a -u me
I tried this on a physical machine with RAID 10 disks and on a brand new VM I setup where the VM is on RAID 1 SSDs, have just included the test runs from my VM as the physical server was much the same just faster.
$ time python readFiles.py 1
real 5m2.493s
user 0m1.783s
sys 0m5.013s
$ time perl readFiles.pl 2
real 0m13.059s
user 0m1.690s
sys 0m2.471s
$ time perl readFiles.pl 2
real 0m13.313s
user 0m1.670s
sys 0m2.579s
$ time python readFiles.py 1
real 4m43.378s
user 0m1.772s
sys 0m4.731s
I noticed on iotop when Perl was running DISK READ was around 45 M/s and IOWAIT approx 70%, when running Python DISK READ was 2M/s and IOWAIT 97%. I'm not sure where to go from here having boiled them down to as simple as I can get.
In case it is relevant
$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
$ perl -v
This is perl 5, version 18, subversion 2 (v5.18.2) built for x86_64-linux-gnu-thread-multi
FURTHER INFO AS REQUESTED
I ran strace and grabbed the info for file 1000.xml but all seem to do the same things:
Perl
$strace -f -T -o trace.perl.1 perl readFiles.pl 2
32303 open("2/1000.xml", O_RDONLY) = 3 <0.000020>
32303 ioctl(3, SNDCTL_TMR_TIMEBASE or SNDRV_TIMER_IOCTL_NEXT_DEVICE or TCGETS, 0x7fff7f6f7b90) = -1 ENOTTY (Inappropriate ioctl for device) <0.000016>
32303 lseek(3, 0, SEEK_CUR) = 0 <0.000016>
32303 fstat(3, {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000016>
32303 fcntl(3, F_SETFD, FD_CLOEXEC) = 0 <0.000017>
32303 fstat(3, {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000030>
32303 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 8192) = 8192 <0.005323>
32303 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 8192) = 1808 <0.000022>
32303 read(3, "", 8192) = 0 <0.000019>
32303 close(3) = 0 <0.000017>
Python
$strace -f -T -o trace.python.1 python readFiles.py 1
32313 open("1/1000.xml", O_RDONLY) = 3 <0.000021>
32313 fstat(3, {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000017>
32313 fstat(3, {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000019>
32313 lseek(3, 0, SEEK_CUR) = 0 <0.000018>
32313 fstat(3, {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000018>
32313 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa18820a000 <0.000019>
32313 lseek(3, 0, SEEK_CUR) = 0 <0.000018>
32313 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 8192) = 8192 <0.006795>
32313 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 4096) = 1808 <0.000031>
32313 read(3, "", 4096) = 0 <0.000018>
32313 close(3) = 0 <0.000027>
32313 munmap(0x7fa18820a000, 4096) = 0 <0.000022>
One difference I noticed, not sure if it's relevant, is that Perl appears to run this against all files before it starts opening them whereas python doesn't:
32303 lstat("2/1000.xml", {st_mode=S_IFREG|0664, st_size=10000, ...}) = 0 <0.000022>
Also ran strace with -c (just took top few calls):
Perl
$ time strace -f -c perl readFiles.pl 2
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
44.07 3.501471 23 150018 read
12.54 0.996490 10 100011 fstat
9.47 0.752552 15 50000 lstat
7.99 0.634904 13 50016 open
6.89 0.547016 11 50017 close
6.19 0.491944 10 50008 50005 ioctl
6.12 0.486208 10 50014 3 lseek
6.10 0.484374 10 50001 fcntl
real 0m37.829s
user 0m6.373s
sys 0m25.042s
Python
$ time strace -f -c python readFiles.py 1
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
42.97 4.186173 28 150104 read
15.58 1.518304 10 150103 fstat
10.51 1.023681 20 50242 174 open
10.12 0.986350 10 100003 lseek
7.69 0.749387 15 50047 munmap
6.85 0.667576 13 50071 close
5.90 0.574888 11 50073 mmap
real 5m5.237s
user 0m7.278s
sys 0m30.736s
Did some parsing of the strace output with -T turned on and counted the first 8192 byte read for each file and it's clear this is where the time is going, below is the total time spent for the 50000 first reads of a file followed by the average time for each read.
300.247128000002 (0.00600446220302379) - Python
11.6845620000003 (0.000233681892724297) - Perl
Not sure if that helps!
UPDATE 2 Updated code in Python to use os.open and os.read and just do a single read of first 4096 bytes (that would work for me as info I want is in top part of file), also eliminates all the other calls in strace:
18346 open("1/1000.xml", O_RDONLY) = 3 <0.000026>
18346 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 4096) = 4096 <0.007206>
18346 close(3) = 0 <0.000024>
$ time strace -f -c python readFiles.py 1
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
55.39 2.388932 48 50104 read
22.86 0.986096 20 50242 174 open
20.72 0.893579 18 50071 close
real 4m48.751s
user 0m3.078s
sys 0m12.360s
Total Time (avg read call)
282.28626 (0.00564290374812595)
Still no better...next up I'm going to create a VM on Azure and try there for another example!!
UPDATE 3 - Apologies for the size of this!!
Ok some interesting results using your (@J.F.Sebastian) script on 3 setups, stripped the output at start for brevity and also removed all the tests which just run super fast from cache and look like:
0.23user 0.26system 0:00.50elapsed 99%CPU (0avgtext+0avgdata 9140maxresident)k
0inputs+0outputs (0major+2479minor)pagefaults 0swaps
Azure A2 Standard VM (2 cores 3.5GB RAM Disk Unknown but slow)
$ uname -a
Linux servername 3.13.0-35-generic #62-Ubuntu SMP Fri Aug 15 01:58:42 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
$ perl -v
This is perl 5, version 18, subversion 2 (v5.18.2) built for x86_64-linux-gnu-thread-multi
(with 41 registered patches, see perl -V for more detail)
+ /usr/bin/time perl slurp.pl 1
1.81user 2.95system 3:11.28elapsed 2%CPU (0avgtext+0avgdata 9144maxresident)k
1233840inputs+0outputs (20major+2461minor)pagefaults 0swaps
+ clearcache
+ sync
+ sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
+ /usr/bin/time python slurp.py 1
1.56user 3.76system 3:06.05elapsed 2%CPU (0avgtext+0avgdata 8024maxresident)k
1232232inputs+0outputs (14major+52273minor)pagefaults 0swaps
+ /usr/bin/time perl slurp.pl 2
1.90user 3.11system 6:02.17elapsed 1%CPU (0avgtext+0avgdata 9144maxresident)k
1233776inputs+0outputs (16major+2465minor)pagefaults 0swaps
Comparable first slurp results for both, not sure what was going on during the 2nd Perl slurp?
My VMWare Linux VM (2 cores 8GB RAM Disk RAID1 SSD)
$ uname -a
Linux servername 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
$ perl -v
This is perl 5, version 18, subversion 2 (v5.18.2) built for x86_64-linux-gnu-thread-multi
(with 41 registered patches, see perl -V for more detail)
+ /usr/bin/time perl slurp.pl 1
1.66user 2.55system 0:13.28elapsed 31%CPU (0avgtext+0avgdata 9136maxresident)k
1233152inputs+0outputs (20major+2460minor)pagefaults 0swaps
+ clearcache
+ sync
+ sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
+ /usr/bin/time python slurp.py 1
2.10user 4.67system 4:45.65elapsed 2%CPU (0avgtext+0avgdata 8012maxresident)k
1232056inputs+0outputs (14major+52269minor)pagefaults 0swaps
+ /usr/bin/time perl slurp.pl 2
2.13user 4.11system 5:01.40elapsed 2%CPU (0avgtext+0avgdata 9140maxresident)k
1233264inputs+0outputs (16major+2463minor)pagefaults 0swaps
This time, as before, Perl is way faster on first slurp, unsure what is happening on second Perl slurp though not seen this behaviour before. Ran measure.sh again and result was exactly the same give or take a few seconds. I then did what any normal person would do and updated the kernel to match the Azure machine 3.13.0-35-generic and ran measure.sh again and made no difference to results.
Out of curiosity I then swapped the 1 and 2 parameter in measure.sh and something strange happened..Perl slowed down and Python sped up!
+ /usr/bin/time perl slurp.pl 2
1.78user 3.46system 4:43.90elapsed 1%CPU (0avgtext+0avgdata 9140maxresident)k
1234952inputs+0outputs (21major+2458minor)pagefaults 0swaps
+ clearcache
+ sync
+ sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
+ /usr/bin/time python slurp.py 2
1.19user 3.09system 0:10.67elapsed 40%CPU (0avgtext+0avgdata 8012maxresident)k
1233632inputs+0outputs (14major+52269minor)pagefaults 0swaps
+ /usr/bin/time perl slurp.pl 1
1.36user 2.32system 0:13.40elapsed 27%CPU (0avgtext+0avgdata 9136maxresident)k
1232032inputs+0outputs (17major+2465minor)pagefaults 0swaps
This has just confused me even further :-(
Physical Server (32 cores 132 GB RAM Disk RAID10 SAS)
$ uname -a
Linux servername 3.5.0-23-generic #35~precise1-Ubuntu SMP Fri Jan 25 17:13:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux
$ python
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
$ perl -v
This is perl 5, version 14, subversion 2 (v5.14.2) built for x86_64-linux-gnu-thread-multi
(with 55 registered patches, see perl -V for more detail)
+ /usr/bin/time perl slurp.pl 1
2.22user 2.60system 0:15.78elapsed 30%CPU (0avgtext+0avgdata 43728maxresident)k
1233264inputs+0outputs (15major+2984minor)pagefaults 0swaps
+ clearcache
+ sync
+ sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
+ /usr/bin/time python slurp.py 1
2.51user 4.79system 1:58.53elapsed 6%CPU (0avgtext+0avgdata 34256maxresident)k
1234752inputs+0outputs (16major+52385minor)pagefaults 0swaps
+ /usr/bin/time perl slurp.pl 2
2.17user 2.95system 0:06.96elapsed 73%CPU (0avgtext+0avgdata 43744maxresident)k
1232008inputs+0outputs (14major+2987minor)pagefaults 0swaps
Here Perl seems to win every time.
baffled
Given the oddity on my local VM, when I swapped directories, which is the machine I have most control over I'm going to try a binary approach on all the possible options of running python vs perl using 1 or 2 as the data directory and try to run them multiple times for consistency but it'll take a while and I'm going a little crazy so break may be required first! All I want is consistency :-(
UPDATE 4 - Consistency
(Below is run on an ubuntu-14.04.1-server VM, Kernel is 3.13.0-35-generic #62-Ubuntu)
I think I've found some consistency, running the tests every way possible for Python/Perl slurp on data dir 1/2 I found the following:
- Python is always slow on created files (i.e. created by dd)
- Python is always fast on copied files (i.e. created by cp -r)
- Perl is always fast on created files (i.e. created by dd)
- Perl is always slow on copied files (i.e. created by cp -r)
So I looked at OS level copying and it seems like on Ubuntu 'cp' behaves in the same way as Python, i.e. slow on original files and fast on copied files.
This is what I ran and the results, I did this a few times on a machine with a single SATA HD and on a RAID10 system, results:
$ mkdir 1
$ cd 1
$ for i in {1..50000}; do dd if=/dev/urandom of=$i.xml bs=1K count=10; done
$ cd ..
$ cp -r 1 2
$ sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
$ time strace -f -c -o trace.copy2c cp -r 2 2copy
real 0m28.624s
user 0m1.429s
sys 0m27.558s
$ sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'
$ time strace -f -c -o trace.copy1c cp -r 1 1copy
real 5m21.166s
user 0m1.348s
sys 0m30.717s
Trace results show where time is being spent
$ head trace.copy1c trace.copy2c
==> trace.copy1c <==
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
60.09 2.541250 25 100008 read
12.22 0.516799 10 50000 write
9.62 0.406904 4 100009 open
5.59 0.236274 2 100013 close
4.80 0.203114 4 50004 1 lstat
4.71 0.199211 2 100009 fstat
2.19 0.092662 2 50000 fadvise64
0.72 0.030418 608 50 getdents
==> trace.copy2c <==
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
47.86 0.802376 8 100008 read
13.55 0.227108 5 50000 write
13.02 0.218312 2 100009 open
7.36 0.123364 1 100013 close
6.83 0.114589 1 100009 fstat
6.31 0.105742 2 50004 1 lstat
3.38 0.056634 1 50000 fadvise64
1.62 0.027191 544 50 getdents
So it seems copying copies is much faster than copying original files, my current guess is that when copied the files get aligned on disk better than when they were originally created making them more efficient to read?
Interestingly 'rsyn' and 'cp' seem to work in opposite ways speedwise, much like Perl and Python!
$ rm -rf 1copy 2copy; sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'; echo "Rsync 1"; /usr/bin/time rsync -a 1 1copy; sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'; echo "Rsync 2"; /usr/bin/time rsync -a 2 2copy
Rsync 1
3.62user 3.76system 0:13.00elapsed 56%CPU (0avgtext+0avgdata 5072maxresident)k
1230600inputs+1200000outputs (13major+2684minor)pagefaults 0swaps
Rsync 2
4.87user 6.52system 5:06.24elapsed 3%CPU (0avgtext+0avgdata 5076maxresident)k
1231832inputs+1200000outputs (13major+2689minor)pagefaults 0swaps
$ rm -rf 1copy 2copy; sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'; echo "Copy 1"; /usr/bin/time cp -r 1 1copy; sync; sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches'; echo "Copy 2"; /usr/bin/time cp -r 2 2copy
Copy 1
0.48user 6.42system 5:05.30elapsed 2%CPU (0avgtext+0avgdata 1212maxresident)k
1229432inputs+1200000outputs (6major+415minor)pagefaults 0swaps
Copy 2
0.33user 4.17system 0:11.13elapsed 40%CPU (0avgtext+0avgdata 1212maxresident)k
1230416inputs+1200000outputs (6major+414minor)pagefaults 0swaps