To determine what the fastest way is, time all of the various suggestions. Here is one that well may end up as "the" fastest (using standard C, no processor dependent SSE or the likes):
unsigned int bits[32][2] = {
{0,0x80000000},{0,0x40000000},{0,0x20000000},{0,0x10000000},
{0,0x8000000},{0,0x4000000},{0,0x2000000},{0,0x1000000},
{0,0x800000},{0,0x400000},{0,0x200000},{0,0x100000},
{0,0x80000},{0,0x40000},{0,0x20000},{0,0x10000},
{0,0x8000},{0,0x4000},{0,0x2000},{0,0x1000},
{0,0x800},{0,0x400},{0,0x200},{0,0x100},
{0,0x80},{0,0x40},{0,0x20},{0,0x10},
{0,8},{0,4},{0,2},{0,1}
};
unsigned int b = 0;
for (i=0; i< 32; i++)
b |= bits[i][a[i]];
The first value in the array is to be the leftmost bit: the highest possible value.
Testing proof-of-concept with some rough timings show this is indeed not magnitudes better than the straightforward loop with b |= (a[i]<<(31-i))
:
Ira 3618 ticks
naive, unrolled 5620 ticks
Ira, 1-shifted 10044 ticks
Galik 10265 ticks
Jongware, using adds 12536 ticks
Jongware 12682 ticks
naive 13373 ticks
(Relative timings, with the same compiler options.)
(The 'adds' routine is mine with indexing replaced with a pointer-to and an explicit add for both indexed arrays. It is 10% slower, meaning my compiler is efficiently optimizing indexed access. Good to know.)