I have a question about synchronizing 4 processes in a UNIX environment. It is very important that no process runs their main functionality without first waiting for the others to "be on the same page", so to speak.
Specifically, they should all not go into their loops without first synchronizing with each other. How do I synchronize 4 processes in a 4 way situation, so that none of them get into their first while loop without first waiting for the others? Note that this is mainly a logic problem, not a coding problem.
To keep things consistent between environments let's just say we have a pseudocode semaphore library with the operations semaphore_create(int systemID), semaphore_open(int semaID), semaphore_wait(int semaID), and semaphore_signal(int semaID).
Here is my attempt and subsequent thoughts:
Process1.c:
int main() {
//Synchronization area (relevant stuff):
int sem1 = semaphore_create(123456); //123456 is an arbitrary ID for the semaphore.
int sem2 = semaphore_create(78901); //78901 is an arbitrary ID for the semaphore.
semaphore_signal(sem1);
semaphore_wait(sem2);
while(true) {
//...do main functionality of process, etc (not really relevant)...
}
}
Process2.c:
int main() {
//Synchronization area (relevant stuff):
int sem1 = semaphore_open(123456);
int sem2 = semaphore_open(78901);
semaphore_signal(sem1);
semaphore_wait(sem2);
while(true) {
//...do main functionality of process etc...
}
}
Process3.c:
int main() {
//Synchronization area (relevant stuff):
int sem1 = semaphore_open(123456);
int sem2 = semaphore_open(78901);
semaphore_signal(sem1);
semaphore_wait(sem2);
while(true) {
//...do main functionality of process etc...
}
}
Process4.c:
int main() {
//Synchronization area (relevant stuff):
int sem1 = semaphore_open(123456);
int sem2 = semaphore_open(78901);
semaphore_signal(sem2);
semaphore_signal(sem2);
semaphore_signal(sem2);
semaphore_wait(sem1);
semaphore_wait(sem1);
semaphore_wait(sem1);
while(true) {
//...do main functionality of process etc...
}
}
We run Process1 first, and it creates all of the semaphores into system memory used in the other processes (the other processes simply call semaphore_open to gain access to those semaphores). Then, all 4 processes have a signal operation, and then a wait. The signal operation causes process1, process2, and process3 to increment the value of sem1 by 1, so it's resultant maximum value is 3 (depending on what order the operating system decides to run these processes in). Process1, 2, and 3, are all waiting then on sem2, and process4 is waiting on sem1 as well. Process 4 then signals sem2 3 times to bring its value back up to 0, and waits on sem1 3 times. Since sem1 was a maximum of 3 from the signalling in the other processes (depending on what order they ran in, again), then it will bring its value back up to 0, and continue running. Thus, all processes will be synchronized.
So yea, not super confident on my answer. I feel that it depends heavily on what order the processes ran in, which is the whole point of synchronization -- that it shouldn't matter what order they run in, they all synchronize correctly. Also, I am doing a lot of work in Process4. Maybe it would be better to solve this using more than 2 semaphores? Wouldn't this also allow for more flexibility within the loops in each process, if I want to do further synchronization?
My question: Please explain why the above logic will or will not work, and/or a solution on how to solve this problem of 4 way synchronization. I'd imagine this is a very common thing to have to think about depending on the industry (eg. banking and synching up bank accounts). I know it is not very difficult, but I have never worked with semaphores before, so I'm kind of confused on how they work.