As the title suggests numpy.dot (I think numpy is general) performs much slower after updating my system. The example code that I'm running to compare is:
from numpy import *
import time
A=random.random((1000,1000))
B=random.random((1000,1000))
st=time.time();dot(A,B);end=time.time();print end-st
The following code takes ~0.09s on my other computer (The computer with the problem used to run as fast as the other one), but the code takes ~0.26 on the computer with the problem.
Here are my attempts to solve this problem. My first guess was, 1: ATLAS is not connected to numpy. So, I installed atlas packages using synaptic, libatlas3-bas, libatlas-doc, libatlas-dev, libatlas3gf-bas, libatlas-bas-dev.
After installing this, I checked whether numpy is linked to atlas or not by typing
import numpy.distutils.system_info as sysinfo
sysinfo.get_into('atlas')
The return message is the following:
ATLAS version 3.10.1 built by buildd on Sat Jul 27 19:04:50 UTC 2013:
UNAME : Linux roseapple 3.2.0-37-generic #58-Ubuntu SMP Thu Jan 24 15:28:10 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux
INSTFLG : -1 0 -a 1 -l 1
ARCHDEFS : -DATL_OS_Linux -DATL_ARCH_x86SSE2 -DATL_CPUMHZ=1596 -DATL_SSE2 -DATL_SSE1 -DATL_USE64BITS -DATL_GAS_x8664
F2CDEFS : -DAdd_ -DF77_INTEGER=int -DStringSunStyle
CACHEEDGE: 1048576
F77 : /usr/bin/x86_64-linux-gnu-gfortran-4.8, version GNU Fortran (Ubuntu/Linaro 4.8.1-8ubuntu1) 4.8.1
F77FLAGS : -fomit-frame-pointer -mfpmath=sse -O2 -msse2 -fPIC -m64
SMC : /usr/bin/c99-gcc, version gcc (Ubuntu/Linaro 4.8.1-8ubuntu1) 4.8.1
SMCFLAGS : -fomit-frame-pointer -mfpmath=sse -O2 -msse2 -fPIC -m64
SKC : /usr/bin/c99-gcc, version gcc (Ubuntu/Linaro 4.8.1-8ubuntu1) 4.8.1
SKCFLAGS : -fomit-frame-pointer -mfpmath=sse -O2 -msse2 -fPIC -m64
Out[12]:
{'define_macros': [('ATLAS_INFO', '"\\"3.10.1\\""')],
'include_dirs': ['/usr/include/atlas'],
'language': 'f77',
'libraries': ['lapack', 'f77blas', 'cblas', 'atlas'],
'library_dirs': ['/usr/lib/atlas-base/atlas', '/usr/lib/atlas-base']}
So, I assume that it is linked. I also went into numpy/core/ path and typed
$ldd _dotblas.so
and the output is
linux-vdso.so.1 => (0x00007fff16ffa000)
libcblas.so.3 => /usr/lib/libcblas.so.3 (0x00007fa913908000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa9136eb000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa913322000)
libatlas.so.3 => /usr/lib/libatlas.so.3 (0x00007fa912d8f000)
libgfortran.so.3 => /usr/lib/x86_64-linux-gnu/libgfortran.so.3 (0x00007fa912a77000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007fa912860000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fa91255c000)
/lib64/ld-linux-x86-64.so.2 (0x00007fa913d4f000)
libquadmath.so.0 => /usr/lib/x86_64-linux-gnu/libquadmath.so.0 (0x00007fa912320000)
Then, to make sure libcblas.so.3 is linked to ATLAS, I typed
$ /usr/sbin/update-alternatives --config libblas.so.3
There are 4 choices for the alternative libblas.so.3 (providing /usr/lib/libblas.so.3).
Selection Path Priority Status
------------------------------------------------------------
0 /usr/lib/openblas-base/libopenblas.so.0 40 auto mode
* 1 /usr/lib/atlas-base/atlas/libblas.so.3 35 manual mode
2 /usr/lib/libblas/libblas.so.3 10 manual mode
3 /usr/lib/openblas-base/libopenblas.so 30 manual mode
4 /usr/lib/openblas-base/libopenblas.so.0 40 manual mode
Press enter to keep the current choice[*], or type selection number: 1
The following steps didn't fix my problem...
And I realized my CPU throttling was on, and that ATLAS doesn't work well when CPU throttling is on. So, I turned it off using rcconf, and reinstalled Atlas as above and reinstalled Numpy as well... But it doesn't solve the problem...
Now I'm running python 2.7.5+, so I tried reinstalling it as well.. didn't solve the problem.
I checked my memory ..
total used free shared buffers cached
Mem: 5959 2345 3614 0 86 730
-/+ buffers/cache: 1528 4431
Swap: 6133 0 6133
And my memory is free.. and my matlab code runs as fast as before.. so I don't think it is memory problem..
Can anyone help, please? It seems like linear algebra package of numpy is slow... Now, It delays my simulation a lot, so I can't really run my codes. Thank you very much in advance! Let me know if there's any confusion in my question.!