Yes, they are helpful
These extra parameters actually do come in handy, but not that often.
In the recent past, I had written a function to find all the permutations of a list of elements:
permute :: [a] -> [[a]]
For example permute [1,2,3]
would be:
[ [1,2,3]
, [1,3,2]
, [2,1,3]
, [2,3,1]
, [3,1,2]
, [3,2,1]
]
The implementation of this function is quite simple:
- If the input is
[]
then return [[]]
. This is the edge case.
- If the input is say
[1,2,3]
:
- Add
1
to every permutation of [2,3]
.
- Add
2
to every permutation of [1,3]
.
- Add
3
to every permutation of [1,2]
.
Of course, the function is recursive. In JavaScript, I implemented it as follows:
var permute = (function () {
return permute;
function permute(list) {
if (list.length === 0) return [[]]; // edge case
else return list.reduce(permutate, []); // list of permutations
// is initially empty
}
function permutate(permutations, item, index, list) {
var before = list.slice(0, index); // all the items before "item"
var after = list.slice(index + 1); // all the items after "item"
var rest = before.concat(after); // all the items beside "item"
var perms = permute(rest); // permutations of rest
// add item to the beginning of each permutation
// the second argument of "map" is the "context"
// (i.e. the "this" parameter of the callback)
var newPerms = perms.map(concat, [item]);
return permutations.concat(newPerms); // update the list of permutations
}
function concat(list) {
return this.concat(list);
}
}());
As you can see, I have used both the index
and the list
parameters of the permutate
function. So, yes there are cases where these extra parameters are indeed helpful.
However, they are also problematic
However these superfluous arguments can sometimes be problematic and difficult to debug. The most common example of this problematic behavior is when map
and parseInt
are used together: javascript - Array#map and parseInt
alert(["1","2","3"].map(parseInt));
As you can see it produces the unexpected output [1,NaN,NaN]
. The reason this happens it because the map
function calls parseInt
with 3 arguments (item
, index
and array
):
parseInt("1", 0, ["1","2","3"]) // 1
parseInt("2", 1, ["1","2","3"]) // NaN
parseInt("3", 2, ["1","2","3"]) // NaN
However, the parseInt
function takes 2 arguments (string
and radix
):
- First case, radix is
0
which is false
. Hence default radix 10 is taken, resulting in 1
.
- Second case, radix is
1
. There is no base 1 numeral system. Hence we get NaN
.
- Third case, radix is
2
which is valid. However there's no 3
in base 2. Hence we get NaN
.
As you see, superfluous arguments can cause a lot of problems which are difficult to debug.
But, there is an alternative
So these extra arguments are helpful but they can cause a lot of problems. Fortunately, there is an easy solution to this problem.
In Haskell if you want to map
over a list of values and the indices of each value then you use do it as follows:
map f (zip list [0..])
list :: [Foo]
[0..] :: [Int]
zip list [0..] :: [(Foo, Int)]
f :: (Foo, Int) -> Bar
map f (zip list [0..]) :: [Bar]
You could do the same thing in JavaScript as follows:
function Maybe() {}
var Nothing = new Maybe;
Just.prototype = new Maybe;
function Just(a) {
this.fromJust = a;
}
function iterator(f, xs) {
var index = 0, length = xs.length;
return function () {
if (index < length) {
var x = xs[index];
var a = f(x, index++, xs);
return new Just(a);
} else return Nothing;
};
}
We use a different map
function:
function map(f, a) {
var b = [];
if (typeof a === "function") { // iterator
for (var x = a(); x !== Nothing; x = a()) {
var y = f(x.fromJust);
b.push(y);
}
} else { // array
for (var i = 0, l = a.length; i < l; i++) {
var y = f(a[i]);
b.push(y);
}
}
return x;
}
Finally:
function decorateIndices(array) {
return iterator(function (item, index, array) {
return [item, index];
}, array);
}
var xs = [1,2,3];
var ys = map(function (a) {
var item = a[0];
var index = a[1];
return item + index;
}, decorateIndices(xs));
alert(ys); // 1,3,5
Similarly you can create decorateArray
and decorateIndicesArray
functions:
function decorateArray(array) {
return iterator(function (item, index, array) {
return [item, array];
}, array);
}
function decorateIndicesArray(array) {
return iterator(function (item, index, array) {
return [item, index, array];
}, array);
}
Currently in Ramda you have two separate functions map
and map.idx
. The above solution allows you to replace map.idx
with idx
such that:
var idx = decorateIndices;
var arr = decorateArray;
var idxArr = decorateIndicesArray;
map.idx(f, list) === map(f, idx(list))
This will allow you to get rid of a whole bunch of .idx
functions, and variants.
To curry or not to curry
There is still one small problem to solve. This looks ugly:
var ys = map(function (a) {
var item = a[0];
var index = a[1];
return item + index;
}, decorateIndices(xs));
It would be nicer to be able to write it like this instead:
var ys = map(function (item, index) {
return item + index;
}, decorateIndices(xs));
However we removed superfluous arguments because they caused problems. Why should we add them back in? Two reasons:
- It looks cleaner.
- Sometimes you have a function written by somebody else which expects these extra arguments.
In Haskell you can use the uncurry
function to solve this problem:
map (uncurry f) (zip list [0..])
list :: [Foo]
[0..] :: [Int]
zip list [0..] :: [(Foo, Int)]
f :: Foo -> Int -> Bar
uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f :: (Foo, Int) -> Bar
map (uncurry f) (zip list [0..]) :: [Bar]
In JavaScript the uncurry
function is simply apply
. It is implemented as follows:
function uncurry(f, context) {
if (arguments.length < 2) context = null;
return function (args) {
return f.apply(context, args);
};
}
Using uncurry
we can write the above example as:
var ys = map(uncurry(function (item, index) {
return item + index;
}), decorateIndices(xs));
This code is awesome because:
- Each function does only one job. Functions can be combined to do more complex work.
- Everything is explicit, which is a good thing according to the Zen of Python.
- There's no redundancy. There's only one
map
function, etc.
So I really hope this answer helps.