I've read and somewhat understand Use of lambda for cons/car/cdr definition in SICP. My problem is understanding the why behind it. My first problem was staring and staring at
(define (cons x y)
(lambda (m) (m x y)))
and not understanding how this function actually did any sort of consing. Consing as I learned it from various Lisp/Scheme books is putting stuff in lists, i.e.,
(cons 1 ()) => (1)
how does
(define (cons x y)
(lambda (m) (m x y)))
do anything like consing? But as the light went on in my head: cons was only sort of a placeholder for the eventual definitions of car and cdr. So car is
(define (car z)
(z (lambda (p q) p)))
and it anticipates an incoming z. But what is this z? When I saw this use:
(car (cons 1 2))
it finally dawned on me that, yes, the cons function in its entirety is z, i.e., we're passing cons to car! How weird!
((lambda (m) (m 1 2)) (lambda (p q) p)) ; and then
((lambda (p q) p) 1 2)
which results in grabbing the first expression since the basic car operation can be thought of as an if statement where the boolean is true, thus, grab the first one.
Yes, all lists can be thought of as cons-ed together expressions, but what have we won by this strangely backward definition? It's as if any initial, stand-alone definition of cons is not germane. It's as if uses of something define that something, as if there's no something until its uses circumscribe it. Is this the primary use of closures? Can someone give me some other examples?