I am running a GAM across many samples and am extracting coefficients/t-values/r-squared from the results in the way shown below. For background, I am using a natural spline, so the regular lm() works fine here and perhaps that is why this method works fine.
tvalsm93exf=ldply(fitsm93exf, function(x) as.data.frame(t(coef(summary(x))[,'t value', drop=FALSE])))
r2m93exf=ldply(fitsm93exf, function(x) as.data.frame(t(summary(x))[,'r.squared', drop=FALSE]))
I would also like to extract the knot locations for each sample set(df=4 and no intercept, so three internal knots and the boundaries). I have tried several variations of the commands above, but haven't been able to index in to this. The regular way to do this is below, so I was attempting to put this into the form above. But I am not certain if the summary function contains these values, or if there is another result I should be including instead.
attr(terms(fits),"predvars")
http://www.inside-r.org/r-doc/splines/ns
Note: This question is related to the question below, if that helps, though its solution did not help me solve my problem: Extract estimates of GAM