I know there is a lot of information in Google about this problem, but I could not solve it. I have a data frame:
> str(myData)
'data.frame': 1199456 obs. of 7 variables:
$ A: num 3064 82307 4431998 1354 193871 ...
$ B: num 6067 403916 2709997 2743 203434 ...
$ C: num 299 11752 33282 170 2748 ...
$ D: num 105 6676 7065 20 1593 ...
$ E: num 8 572 236 3 170 ...
$ F: num 0 21 95 0 13 ...
$ G: num 583 18512 961328 348 42728 ...
Then I convert it to a matrix in order to apply the Cramer-von Mises test from "cramer" library:
> myData = as.matrix(myData)
> str(myData)
num [1:1199456, 1:7] 3064 82307 4431998 1354 193871 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:1199456] "8" "32" "48" "49" ...
..$ : chr [1:7] "A" "B" "C" "D" ...
After that, if I apply a "cramer.test(myData[x1:y1,], myData[x2:y2,])" I get the following error:
Error in rep(0, (RVAL$m + RVAL$n)^2) : invalid 'times' argument
In addition: Warning message:
In matrix(rep(0, (RVAL$m + RVAL$n)^2), ncol = (RVAL$m + RVAL$n)) :
NAs introduced by coercion
I also tried to convert the data frame to a matrix like this, but the error is the same:
> myData = as.matrix(sapply(myData, as.numeric))
> str(myData)
num [1:1199456, 1:7] 3064 82307 4431998 1354 193871 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:7] "A" "B" "C" "D" ...