Technically it is sure possible to split a list and then start threads that runs your List in parallel. You can also implement everything yourself, as you already have done, but this isn't a good approach. At first splitting a List into chunks that gets processed in parallel is already what Parallel.For
or Parallel.ForEach
does. There is no need to re-implement everything yourself.
Now, you constantly ask if something can run 300 or 500 notifications in parallel. But actually this is not a good question because you completly miss the point of running something in parallel.
So, let me explain you why that question is not good. At first, you should ask yourself why do you want to run something in parallel? The answer to that is, you want that something runs faster by using multiple CPU-cores.
Now your simple idea is probably that spawning 300 or 500 threads is faster, because you have more threads and it runs more things "in parallel". But that is not exactly the case.
At first, creating a thread is not "free". Every thread you create has some overhead, it takes some CPU-time to create a thread, and also it needs some memory. On top of that, if you create 300 threads it doesn't mean 300 threads run in parallel. If you have for example an 8 core CPU only 8 threads really can run in parallel. Creating more threads can even hurt your performance. Because now your program needs to switch constanlty between threads, that also cost CPU-performance.
The result of all that is. If you have something lightweight some small code that don't do a lot of computation it ends that creating a lot of threads will slow down your application instead of running faster, because the managing of your threads creates more overhead than running it on (for example) 8 cpu-cores.
That means, if you have a list of 30,000 of somewhat. It usally end that it is faster to just split your list in 8 chunks and work through your list in 8 threads as creating 300 Threads.
Your goal should never be: Can it run xxx things in parallel?
The question should be like: How many threads do i need, and how much items should every thread process to get my work as fastest done.
That is an important difference because just spawning more threads doesn't mean something ends up beeing fast.
So how many threads do you need, and how many items should every thread process? Well, you can write a lot of code to test it. But the amount changes from hardware to hardware. A PC with just 4 cores have another optimum than a system with 8 cores. If what you are doing is IO bound (for example read/write to disk/network) you also don't get more speed by increasing your threads.
So what you now can do is test everything, try to get the correct thread number and do a lot of benchmarking to find the best numbers.
But actually, that is the whole purpose of the TPL library with the Task<T>
class. The Task<T>
class already looks at your computer how many cpu-cores it have. And when you are running your Task it automatically tries to create as much threads needed to get the maximum out of your system.
So my suggestion is that you should use the TPL library with the Task<T>
class. In my opinion you should never create Threads directly yourself or doing partition yourself, because all of that is already done in TPL.