Problem Definition:
Count the longest subset pairs within a set which sums to value 10. Once you have identified a pair, those 2 numbers cannot be used for forming other pairs. Output should be a number denoting count of numbers involved in such pairs.
Input :1 {1,2,8,9,1,9,1,9} Ans : 6 (3 pairs, 6 numbers, index = {0,7},{3,6},{4,5})
Input :2 {5,5,5,5,5,5,5,5} Ans : 8 (4 pairs, 8 numbers, index = {0,7},{1,6},{2,5},{3,4})
Input :3 {2,4,3,7,3,8,6,7} Ans : 4 (2 pairs, 4 numbers, index = {0,5},{3,4} or {0,5},{2,3} or {2,7},{3,4} or {1,6},{2,3} or {1,6}, {3,4})
I have written the following code:
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE 10
#define SUM 10
int d[ARRAYSIZE][ARRAYSIZE];
int count = 0;
int final[ARRAYSIZE/2];
int reset = 0;
int subset_to_sum(int a[], int m, int n, int sum)
{
//printf("%d %d %d \t",m,n,d[m][n]);
if (m >= n)
return 0;
if (d[m][n] != -1)
return d[m][n];
if (a[m]+a[n] == sum)
{
d[m][n] = 1;
count = count+1;
//printf("%d\n",count);
if (m+1>=n-1)
{
final[reset] = count;
reset = reset+1;
count = 0;
}
else
final[reset] = count;
return 1+subset_to_sum(a, m+1, n-1, sum);
}
else if (a[m] > sum)
return subset_to_sum(a, m+1, n, sum);
else if(a[n] > sum)
return subset_to_sum(a, m, n-1, sum);
else
return (subset_to_sum(a, m+1, n, sum)+subset_to_sum(a, m, n-1, sum)+subset_to_sum(a, m+1, n-1, sum));
}
int main(void)
{
int i = 0;
int j;
int inc;
//int set[] = {1,2,8,9,1,9,1,9};
//int set[] = {1,2,8,4,5,9,1,9};
//int set[] = {2,4,3,7,3,8,6,7};
//int set[] = {5,5,5,5,5,5,5,5};
//int set[] = {25,35,45,5,6,7,8,9};
//int set[] = {1,2,3,4,5,6,7,8,9,10};
for(i=0;i<ARRAYSIZE;i++)
{
for(j=0;j<ARRAYSIZE;j++)
{
d[i][j] = -1;
}
}
printf("\n");
//printf("Total Pairs making sum %d is : %d\n",SUM,subset_to_sum(set, 0, ARRAYSIZE-1, SUM)*2);
subset_to_sum(set, 0, ARRAYSIZE-1, SUM);
int max = 0;
for(i=0;i<4;i++)
{
if(final[i]>max)
max = final[i];
}
printf("Subset Pairs making sum %d is: %d\n",SUM,max*2);
return 0;
}
My code fails for the input : {1,2,3,4,5,6,7,8,9,10}. Could someone point to me the flaw in my approach.
Thanks!